K21P121M50SF4
K21 Sub-Family
Supports the following:
MK21DX128VMC5, MK21DX256VMC5,
MK21DN512VMC5
Features
Operating Characteristics
Voltage range: 1.71 to 3.6 V
Flash write voltage range: 1.71 to 3.6 V
Temperature range (ambient): -40 to 105°C
Performance
Up to 50 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
Memories and memory interfaces
Up to 512 KB of program flash for devices without
FlexNVM.
Up to 256 KB program flash for devices with
FlexNVM.
64 KB FlexNVM on FlexMemory devices
4 KB FlexRAM on FlexMemory devices
Up to 64 KB RAM
Serial programming interface (EzPort)
Clocks
3 to 32 MHz crystal oscillator
32 kHz crystal oscillator
Multi-purpose clock generator
System peripherals
Multiple low-power modes to provide power
optimization based on application requirements
16-channel DMA controller, supporting up to 63
request sources
External watchdog monitor
Software watchdog
Low-leakage wakeup unit
Security and integrity modules
Hardware CRC module to support fast cyclic
redundancy checks
Tamper detect and secure storage
Hardware random-number generator
Hardware encryption supporting DES, 3DES, AES,
MD5, SHA-1, and SHA-256 algorithms
128-bit unique identification (ID) number per chip
Human-machine interface
General-purpose input/output
Analog modules
16-bit SAR ADC
12-bit DAC
Two analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
Timers
Programmable delay block
Eight-channel motor control/general purpose/PWM
timer
Two 2-channel general purpose timers, one with
quadrature decoder functionality
Periodic interrupt timers
16-bit low-power timer
Carrier modulator transmitter
Real-time clock
Communication interfaces
USB full-/low-speed On-the-Go controller with on-
chip transceiver
USB Device Charger detect
Two SPI modules
Two I2C modules
Four UART modules
I2S module
Freescale Semiconductor Document Number: K21P121M50SF4
Data Sheet: Technical Data Rev. 4, 08/2013
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2012–2013 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
1.1 Determining valid orderable parts......................................3
2 Part identification......................................................................3
2.1 Description.........................................................................3
2.2 Format...............................................................................3
2.3 Fields.................................................................................3
2.4 Example............................................................................4
2.5 Small package marking.....................................................4
3Terminology and guidelines......................................................5
3.1 Definition: Operating requirement......................................5
3.2 Definition: Operating behavior...........................................5
3.3 Definition: Attribute............................................................6
3.4 Definition: Rating...............................................................6
3.5 Result of exceeding a rating..............................................7
3.6 Relationship between ratings and operating
requirements......................................................................7
3.7 Guidelines for ratings and operating requirements............8
3.8 Definition: Typical value.....................................................8
3.9 Typical value conditions....................................................9
4Ratings......................................................................................9
4.1 Thermal handling ratings...................................................9
4.2 Moisture handling ratings..................................................10
4.3 ESD handling ratings.........................................................10
4.4 Voltage and current operating ratings...............................10
5 General.....................................................................................10
5.1 AC electrical characteristics..............................................11
5.2 Nonswitching electrical specifications...............................11
5.2.1 Voltage and current operating requirements.........11
5.2.2 LVD and POR operating requirements.................12
5.2.3 Voltage and current operating behaviors..............13
5.2.4 Power mode transition operating behaviors..........13
5.2.5 Power consumption operating behaviors..............14
5.2.6 EMC radiated emissions operating behaviors.......18
5.2.7 Designing with radiated emissions in mind...........19
5.2.8 Capacitance attributes..........................................19
5.3 Switching specifications.....................................................19
5.3.1 Device clock specifications...................................19
5.3.2 General switching specifications...........................20
5.4 Thermal specifications.......................................................21
5.4.1 Thermal operating requirements...........................21
5.4.2 Thermal attributes.................................................21
6 Peripheral operating requirements and behaviors....................22
6.1 Core modules....................................................................22
6.1.1 JTAG electricals....................................................22
6.2 System modules................................................................25
6.3 Clock modules...................................................................25
6.3.1 MCG specifications...............................................25
6.3.2 Oscillator electrical specifications.........................27
6.3.3 32 kHz oscillator electrical characteristics.............30
6.4 Memories and memory interfaces.....................................30
6.4.1 Flash electrical specifications................................30
6.4.2 EzPort switching specifications.............................33
6.5 Security and integrity modules..........................................34
6.5.1 DryIce Tamper Electrical Specifications................34
6.6 Analog...............................................................................35
6.6.1 ADC electrical specifications.................................35
6.6.2 CMP and 6-bit DAC electrical specifications.........39
6.6.3 12-bit DAC electrical characteristics.....................42
6.7 Timers................................................................................45
6.8 Communication interfaces.................................................45
6.8.1 USB electrical specifications.................................45
6.8.2 USB DCD electrical specifications........................45
6.8.3 VREG electrical specifications..............................46
6.8.4 DSPI switching specifications (limited voltage
range)....................................................................46
6.8.5 DSPI switching specifications (full voltage range).48
6.8.6 I2C switching specifications..................................50
6.8.7 UART switching specifications..............................50
6.8.8 Normal Run, Wait and Stop mode performance
over the full operating voltage range.....................50
6.8.9 VLPR, VLPW, and VLPS mode performance
over the full operating voltage range.....................52
7 Dimensions...............................................................................54
7.1 Obtaining package dimensions.........................................54
8 Pinout........................................................................................54
8.1 K21 Signal Multiplexing and Pin Assignments..................54
8.2 K21 Pinouts.......................................................................59
9 Revision History........................................................................60
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
2 Freescale Semiconductor, Inc.
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to freescale.com and perform a part number search for the
following device numbers: PK21 and MK21 .
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K21
A Key attribute D = Cortex-M4 w/ DSP
F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
Table continues on the next page...
Ordering parts
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 3
Field Description Values
FFF Program flash memory size 32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
R Silicon revision Z = Initial
(Blank) = Main
A = Revision after main
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC Maximum CPU frequency (MHz) 5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
18 = 180 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
2.4 Example
This is an example part number:
MK21DN512VMC5
2.5 Small package marking
In an effort to save space, small package devices use special marking on the chip. These
markings have the following format:
Q ## C F T PP
This table lists the possible values for each field in the part number for small packages
(not all combinations are valid):
Part identification
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
4 Freescale Semiconductor, Inc.
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
## Kinetis family 1# = K11/K12
2# = K21/K22
C Speed G = 50 MHz
F Flash memory configuration G = 128 KB + Flex
H = 256 KB + Flex
9 = 512 KB
T Temperature range (°C) V = –40 to 105
PP Package identifier MC = 121 MAPBGA
This tables lists some examples of small package marking along with the original part
numbers:
Original part number Alternate part number
MK21DX128VMC5 M21GGVMC
MK21DX256VMC5 M21GHVMC
MK21DN512VMC5 M21G9VMC
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
0.9 1.1 V
Terminology and guidelines
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 5
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior:
Symbol Description Min. Max. Unit
IWP Digital I/O weak pullup/
pulldown current
10 130 µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
Terminology and guidelines
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
6 Freescale Semiconductor, Inc.
3.4.1 Example
This is an example of an operating rating:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
–0.3 1.2 V
3.5 Result of exceeding a rating
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
3.6 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Terminology and guidelines
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 7
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol Description Min. Typ. Max. Unit
IWP Digital I/O weak
pullup/pulldown
current
10 70 130 µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
Terminology and guidelines
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
8 Freescale Semiconductor, Inc.
0.90 0.95 1.00 1.05 1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD (V)
I(μA)
DD_STOP
TJ
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD 3.3 V supply voltage 3.3 V
4 Ratings
4.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
Ratings
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 9
4.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4.4 Voltage and current operating ratings
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
IDD Digital supply current 155 mA
VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 V
VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V
IDMaximum current single pin limit (applies to all digital pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB0_DP USB0_DP input voltage –0.3 3.63 V
VUSB0_DM USB0_DM input voltage –0.3 3.63 V
VREGIN USB regulator input –0.3 6.0 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
10 Freescale Semiconductor, Inc.
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICIO I/O pin DC injection current — single pin
VIN < VSS-0.3V (Negative current injection)
VIN > VDD+0.3V (Positive current injection)
-3
+3
mA
1
Table continues on the next page...
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 11
Table 1. Voltage and current operating requirements (continued)
Symbol Description Min. Max. Unit Notes
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
Negative current injection
Positive current injection
-25
+25
mA
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
80 mV
VLVDL Falling low-voltage detect threshold — low range
(LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
12 Freescale Semiconductor, Inc.
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Max. Unit Notes
VOH Output high voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA
VDD – 0.5
VDD – 0.5
V
V
Output high voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
VOL Output low voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA
0.5
0.5
V
V
Output low voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
IIN Input leakage current (per pin)
@ full temperature range
@ 25 °C
1.0
0.1
μA
μA
1
IOZ Hi-Z (off-state) leakage current (per pin) 1 μA
IOZ Total Hi-Z (off-state) leakage current (all input pins) 4 μA
RPU Internal pullup resistors 22 50 2
RPD Internal pulldown resistors 22 50 3
1. Tested by ganged leakage method
2. Measured at Vinput = VSS
3. Measured at Vinput = VDD
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 13
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table
assume this clock configuration:
CPU and system clocks = 50 MHz
Bus clock = 50 MHz
Flash clock = 25 MHz
MCG mode: FEI
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
1.71 V/(VDD slew rate) ≤ 300 μs
1.71 V/(VDD slew rate) > 300 μs
300
1.7 V / (VDD
slew rate)
μs 1
VLLS0 RUN 135 μs
VLLS1 RUN 135 μs
VLLS2 RUN 85 μs
VLLS3 RUN 85 μs
LLS RUN 6 μs
VLPS RUN 5.2 μs
STOP RUN 5.2 μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8 V
@ 3.0 V
12.98
12.93
14
13.8
mA
mA
2
Table continues on the next page...
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
14 Freescale Semiconductor, Inc.
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8 V
@ 3.0 V
@ 25°C
@ 125°C
17.04
17.01
19.8
19.3
18.9
21.3
mA
mA
mA
3, 4
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
7.95 9.5 mA 2
IDD_WAIT Wait mode reduced frequency current at 3.0 V —
all peripheral clocks disabled
5.88 7.4 mA 5
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
320
360
410
610
436
489
620
1100
μA
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
754 μA 6
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
1.1 mA 7
IDD_VLPW Very-low-power wait mode current at 3.0 V 437 μA 8
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
7.33
14
28
110
24.2
32
48
280
μA
IDD_LLS Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
3.14
6.48
13.85
55.53
4.8
28.3
44.6
71.3
μA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
2.19
4.35
8.92
35.33
3.4
4.35
24.6
45.3
μA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
1.77
2.81
5.20
19.88
3.1
13.8
22.3
34.2
μA
Table continues on the next page...
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 15
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
1.03
1.92
4.03
17.43
1.8
7.5
15.9
28.7
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
0.543
1.36
3.39
16.52
1.1
7.58
14.3
24.1
μA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
0.359
1.03
2.87
15.20
0.95
6.8
15.4
25.3
μA
IDD_VBAT Average current when CPU is not accessing RTC
registers at 3.0 V
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
0.91
1.1
1.5
4.3
1.1
1.35
1.85
5.7
μA 9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral
clocks disabled.
3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral
clocks enabled, and peripherals are in active operation.
4. Max values are measured with CPU executing DSP instructions
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.
6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
Code executing from flash.
7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled
but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Includes 32 kHz oscillator current and RTC operation.
5.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in FBE mode
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFL
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
16 Freescale Semiconductor, Inc.
Figure 2. Run mode supply current vs. core frequency
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 17
Figure 3. VLPR mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors 1
Symbol Description Frequency
band (MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 19 dBμV 2, 3
VRE2 Radiated emissions voltage, band 2 50–150 21 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 19 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 11 dBμV
VRE_IEC IEC level 0.15–1000 L 3, 4
1. This data was collected on a MK20DN128VLH5 64pin LQFP device.
2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
18 Freescale Semiconductor, Inc.
3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz
4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol Description Min. Max. Unit Notes
Normal run mode
fSYS System and core clock 50 MHz
System and core clock when Full Speed USB in
operation
20 MHz
fBUS Bus clock 50 MHz
fFLASH Flash clock 25 MHz
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
fFLASH Flash clock 1 MHz
fERCLK External reference clock 16 MHz
fLPTMR_pin LPTMR clock 25 MHz
Table continues on the next page...
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 19
Table 9. Device clock specifications (continued)
Symbol Description Min. Max. Unit Notes
fLPTMR_ERCLK LPTMR external reference clock 16 MHz
fI2S_MCLK I2S master clock 12.5 MHz
fI2S_BCLK I2S bit clock 4 MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all pins configured for:
GPIO signaling
Other peripheral module signaling not explicitly stated elsewhere
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
50 ns 3
External reset pulse width (digital glitch filter disabled) 100 ns 3
Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
13
7
36
24
ns
ns
ns
ns
4
Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
5
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
20 Freescale Semiconductor, Inc.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75 pF load
5. 15 pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol Description Min. Max. Unit
TJDie junction temperature –40 125 °C
TAAmbient temperature –40 105 °C
5.4.2 Thermal attributes
Board type Symbol Description 121 MAPBGA Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
79 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
46 °C/W 1, 3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
67 °C/W 1,3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
42 °C/W 1,3
RθJB Thermal
resistance, junction
to board
29 °C/W 4
RθJC Thermal
resistance, junction
to case
21 °C/W 5
Table continues on the next page...
General
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 21
Board type Symbol Description 121 MAPBGA Unit Notes
ΨJT Thermal
characterization
parameter, junction
to package top
outside center
(natural
convection)
4 °C/W 6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental
Conditions—Forced Convection (Moving Air) with the board horizontal.
4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 JTAG electricals
Table 12. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
25
50
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
20
10
ns
ns
ns
J4 TCLK rise and fall times 3 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
22 Freescale Semiconductor, Inc.
Table 12. JTAG limited voltage range electricals (continued)
Symbol Description Min. Max. Unit
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 0 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 17 ns
J12 TCLK low to TDO high-Z 17 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 13. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
20
40
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
25
12.5
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 0 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.4 ns
J11 TCLK low to TDO data valid 22.1 ns
J12 TCLK low to TDO high-Z 22.1 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 23
J2
J3 J3
J4 J4
TCLK (input)
Figure 4. Test clock input timing
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 5. Boundary scan (JTAG) timing
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
24 Freescale Semiconductor, Inc.
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 6. Test Access Port timing
J14
J13
TCLK
TRST
Figure 7. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 25
6.3.1 MCG specifications
Table 14. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
fints_t Internal reference frequency (slow clock) — user
trimmed
31.25 39.0625 kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
± 0.2 ± 0.5 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over voltage and temperature
+0.5/-0.7 ± 2 %fdco 1, 2
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 0.3 ±1 %fdco 1, 2
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
fintf_t Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3 5 MHz
floc_low Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
kHz
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 3, 4
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX32 DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 5, 6
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10)
2197 × ffll_ref
71.99 MHz
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
26 Freescale Semiconductor, Inc.
Table 14. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Jcyc_fll FLL period jitter
fDCO = 48 MHz
fDCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 7
PLL
fvco VCO operating frequency 48.0 100 MHz
Ipll PLL operating current
PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
1060 µA 8
Ipll PLL operating current
PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
600 µA 8
fpll_ref PLL reference frequency range 2.0 4.0 MHz
Jcyc_pll PLL period jitter (RMS)
fvco = 48 MHz
fvco = 100 MHz
120
50
ps
ps
9
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 48 MHz
fvco = 100 MHz
1350
600
ps
ps
9
Dlock Lock entry frequency tolerance ± 1.49 ± 2.98 %
Dunl Lock exit frequency tolerance ± 4.47 ± 5.97 %
tpll_lock Lock detector detection time 150 × 10-6
+ 1075(1/
fpll_ref)
s10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2 V <= VDD <= 3.6 V.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 27
6.3.2.1 Oscillator DC electrical specifications
Table 15. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
500
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
IDDOSC Supply current — high-gain mode (HGO=1)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
25
400
500
2.5
3
4
μA
μA
μA
mA
mA
mA
1
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-power
mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain mode
(HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
0
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
28 Freescale Semiconductor, Inc.
Table 15. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx and Cy can be provided by using either integrated capacitors or external components.
4. When low-power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other device.
6.3.2.2 Oscillator frequency specifications
Table 16. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low-
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high-
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz 1, 2
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
750 ms 3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
250 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that—it remains within the limits of
DCO input clock frequency when divided by FRDIV.
3. Proper PC board layout procedures must be followed to achieve specifications.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 29
4. Crystal startup time is defined as the time between oscillator being enabled and OSCINIT bit in the MCG_S register being
set.
NOTE
The 32 kHz oscillator works in low power mode by default and
cannot be moved into high power/gain mode.
6.3.3 32 kHz oscillator electrical characteristics
6.3.3.1 32 kHz oscillator DC electrical specifications
Table 17. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Cpara Parasitical capacitance of EXTAL32 and XTAL32 5 7 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
6.3.3.2 32 kHz oscillator frequency specifications
Table 18. 32 kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
vec_extal32 Externally provided input clock amplitude 700 VBAT mV 2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The
oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied
clock must be within the range of VSS to VBAT.
6.4 Memories and memory interfaces
6.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
30 Freescale Semiconductor, Inc.
6.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 19. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm4 Longword Program high-voltage time 7.5 18 μs
thversscr Sector Erase high-voltage time 13 113 ms 1
thversblk256k Erase Block high-voltage time for 256 KB 104 904 ms 1
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2 Flash timing specifications — commands
Table 20. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
trd1blk64k
trd1blk256k
Read 1s Block execution time
64 KB data flash
256 KB program flash
0.9
1.7
ms
ms
trd1sec2k Read 1s Section execution time (flash sector) 60 μs 1
tpgmchk Program Check execution time 45 μs 1
trdrsrc Read Resource execution time 30 μs 1
tpgm4 Program Longword execution time 65 145 μs
tersblk64k
tersblk256k
Erase Flash Block execution time
64 KB data flash
256 KB program flash
58
122
580
985
ms
ms
2
tersscr Erase Flash Sector execution time 14 114 ms 2
tpgmsec512
tpgmsec1k
tpgmsec2k
Program Section execution time
512 bytes flash
1 KB flash
2 KB flash
2.4
4.7
9.3
ms
ms
ms
trd1all Read 1s All Blocks execution time 1.8 ms
trdonce Read Once execution time 25 μs 1
tpgmonce Program Once execution time 65 μs
tersall Erase All Blocks execution time 250 2000 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 31
Table 20. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
tswapx01
tswapx02
tswapx04
tswapx08
Swap Control execution time
control code 0x01
control code 0x02
control code 0x04
control code 0x08
200
70
70
150
150
30
μs
μs
μs
μs
tpgmpart64k
Program Partition for EEPROM execution time
64 KB FlexNVM
138
ms
tsetramff
tsetram32k
tsetram64k
Set FlexRAM Function execution time:
Control Code 0xFF
32 KB EEPROM backup
64 KB EEPROM backup
70
0.8
1.3
1.2
1.9
μs
ms
ms
Byte-write to FlexRAM for EEPROM operation
teewr8bers Byte-write to erased FlexRAM location execution
time
175 260 μs 3
teewr8b32k
teewr8b64k
Byte-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
385
475
1800
2000
μs
μs
Word-write to FlexRAM for EEPROM operation
teewr16bers Word-write to erased FlexRAM location
execution time
175 260 μs
teewr16b32k
teewr16b64k
Word-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
385
475
1800
2000
μs
μs
Longword-write to FlexRAM for EEPROM operation
teewr32bers Longword-write to erased FlexRAM location
execution time
360 540 μs
teewr32b32k
teewr32b64k
Longword-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
630
810
2050
2250
μs
μs
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
32 Freescale Semiconductor, Inc.
6.4.1.3 Flash high voltage current behaviors
Table 21. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
IDD_PGM Average current adder during high voltage
flash programming operation
2.5 6.0 mA
IDD_ERS Average current adder during high voltage
flash erase operation
1.5 4.0 mA
6.4.1.4 Reliability specifications
Table 22. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles 5 50 years
tnvmretp1k Data retention after up to 1 K cycles 20 100 years
nnvmcycp Cycling endurance 10 K 50 K cycles 2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles 5 50 years
tnvmretd1k Data retention after up to 1 K cycles 20 100 years
nnvmcycd Cycling endurance 10 K 50 K cycles 2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance 5 50 years
tnvmretee10 Data retention up to 10% of write endurance 20 100 years
nnvmwree16
nnvmwree128
nnvmwree512
nnvmwree4k
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 128
EEPROM backup to FlexRAM ratio = 512
EEPROM backup to FlexRAM ratio = 4096
35 K
315 K
1.27 M
10 M
175 K
1.6 M
6.4 M
50 M
writes
writes
writes
writes
3
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ °C.
3. Write endurance represents the number of writes to each FlexRAM location at -40 °C ≤Tj ≤ °C influenced by the cycling
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and
typical values assume all byte-writes to FlexRAM.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 33
6.4.2 EzPort switching specifications
Table 23. EzPort switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
EP2
EP3 EP4
EP5 EP6
EP7 EP8
EP9
EZP_CK
EZP_CS
EZP_Q (output)
EZP_D (input)
Figure 8. EzPort Timing Diagram
6.5 Security and integrity modules
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
34 Freescale Semiconductor, Inc.
6.5.1 DryIce Tamper Electrical Specifications
Information about security-related modules is not included in this document and is
available only after a nondisclosure agreement (NDA) has been signed. To request an
NDA, please contact your local Freescale sales representative.
6.6 Analog
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1 16-bit ADC operating conditions
Table 24. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2
ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL ADC reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage 16-bit differential mode
All other modes
VREFL
VREFL
31/32 *
VREFH
VREFH
V
CADIN Input capacitance 16-bit mode
8-bit / 10-bit / 12-bit
modes
8
4
10
5
pF
RADIN Input resistance 2 5
RAS Analog source
resistance
13-bit / 12-bit modes
fADCK < 4 MHz
5
3
fADCK ADC conversion
clock frequency
≤ 13-bit mode 1.0 18.0 MHz 4
fADCK ADC conversion
clock frequency
16-bit mode 2.0 12.0 MHz 4
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 35
Table 24. 16-bit ADC operating conditions (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
Crate ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
20.000
818.330
Ksps
5
Crate ADC conversion
rate
16-bit mode
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
37.037
461.467
Ksps
5
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS
time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
Figure 9. ADC input impedance equivalency diagram
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
36 Freescale Semiconductor, Inc.
6.6.1.2 16-bit ADC electrical characteristics
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1. Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
fADACK
ADC
asynchronous
clock source
ADLPC = 1, ADHSC = 0
ADLPC = 1, ADHSC = 1
ADLPC = 0, ADHSC = 0
ADLPC = 0, ADHSC = 1
1.2
2.4
3.0
4.4
2.4
4.0
5.2
6.2
3.9
6.1
7.3
9.5
MHz
MHz
MHz
MHz
tADACK = 1/
fADACK
Sample Time See Reference Manual chapter for sample times
TUE Total unadjusted
error
12-bit modes
<12-bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12-bit modes
<12-bit modes
±0.7
±0.2
-1.1 to +1.9
-0.3 to 0.5
LSB45
INL Integral non-
linearity
12-bit modes
<12-bit modes
±1.0
±0.5
-2.7 to +1.9
-0.7 to +0.5
LSB45
EFS Full-scale error 12-bit modes
<12-bit modes
-4
-1.4
-5.4
-1.8
LSB4VADIN =
VDDA
5
EQQuantization
error
16-bit modes
≤13-bit modes
-1 to 0
±0.5
LSB4
ENOB Effective number
of bits
16-bit differential mode
Avg = 32
Avg = 4
16-bit single-ended mode
Avg = 32
Avg = 4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise
plus distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
–94
-85
dB
dB
7
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 37
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1. Min. Typ.2Max. Unit Notes
SFDR Spurious free
dynamic range
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
82
78
95
90
dB
dB
7
EIL Input leakage
error
IIn × RAS mV IIn =
leakage
current
(refer to
the MCU's
voltage
and current
operating
ratings)
Temp sensor
slope
Across the full temperature
range of the device
1.55 1.62 1.69 mV/°C 8
VTEMP25 Temp sensor
voltage
25 °C 706 716 726 mV 8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
38 Freescale Semiconductor, Inc.
Figure 10. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 39
6.6.2 CMP and 6-bit DAC electrical specifications
Table 26. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1,
PMODE=1)
20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1,
PMODE=0)
80 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
40 Freescale Semiconductor, Inc.
0.04
0.05
0.06
0.07
0.08
P Hystereris (V)
00
01
10
HYSTCTR
Setting
0
0.01
0.02
0.03
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
CM
10
11
Vin level (V)
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 41
0 08
0.1
0.12
0.14
0.16
0.18
P Hystereris (V)
00
01
10
HYSTCTR
Setting
0
0.02
0.04
0.06
0.08
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
CMP
10
11
Vin level (V)
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1 12-bit DAC operating requirements
Table 27. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
TATemperature Operating temperature
range of the device
°C
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
42 Freescale Semiconductor, Inc.
6.6.3.2 12-bit DAC operating behaviors
Table 28. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 330 μA
IDDA_DACH
P
Supply current — high-speed mode 1200 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)
— low-power mode and high-speed mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80h F7Fh 80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
CT Channel to channel cross talk -80 dB
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to VDACR −100 mV
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to
0x800, temperature range is across the full range of the device
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 43
Figure 14. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
44 Freescale Semiconductor, Inc.
Figure 15. Offset at half scale vs. temperature
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit usb.org.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 45
6.8.2 USB DCD electrical specifications
Table 29. USB DCD electrical specifications
Symbol Description Min. Typ. Max. Unit
VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 0.7 V
VLGC Threshold voltage for logic high 0.8 2.0 V
IDP_SRC USB_DP source current 7 10 13 μA
IDM_SINK USB_DM sink current 50 100 150 μA
RDM_DWN D- pulldown resistance for data pin contact detect 14.25 24.8
VDAT_REF Data detect voltage 0.25 0.33 0.4 V
6.8.3 VREG electrical specifications
Table 30. VREG electrical specifications
Symbol Description Min. Typ.1Max. Unit Notes
VREGIN Input supply voltage 2.7 5.5 V
IDDon Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
125 186 μA
IDDstby Quiescent current — Standby mode, load current
equal zero
1.1 10 μA
IDDoff Quiescent current — Shutdown mode
VREGIN = 5.0 V and temperature=25 °C
Across operating voltage and temperature
650
4
nA
μA
ILOADstby Maximum load current — Standby mode 1 mA
VReg33out Regulator output voltage — Input supply
(VREGIN) > 3.6 V
Run mode
Standby mode
3
2.1
3.3
2.8
3.6
3.6
V
V
VReg33out Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1 3.6 V 2
COUT External output capacitor 1.76 2.2 8.16 μF
ESR External output capacitor equivalent series
resistance
1 100
ILIM Short circuit current 315 mA
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
46 Freescale Semiconductor, Inc.
6.8.4 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 31. Master mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation 25 MHz
DS1 DSPI_SCK output cycle time 2 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
2
ns 1
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
2
ns 2
DS5 DSPI_SCK to DSPI_SOUT valid 8.5 ns
DS6 DSPI_SCK to DSPI_SOUT invalid −2 ns
DS7 DSPI_SIN to DSPI_SCK input setup 15 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 16. DSPI classic SPI timing — master mode
Table 32. Slave mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Frequency of operation 12.5 MHz
DS9 DSPI_SCK input cycle time 4 x tBUS ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 47
Table 32. Slave mode DSPI timing (limited voltage range) (continued)
Num Description Min. Max. Unit
DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS11 DSPI_SCK to DSPI_SOUT valid 10 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 14 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 14 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 17. DSPI classic SPI timing — slave mode
6.8.5 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 33. Master mode DSPI timing (full voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V 1
Frequency of operation 12.5 MHz
DS1 DSPI_SCK output cycle time 4 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
4
ns 2
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
48 Freescale Semiconductor, Inc.
Table 33. Master mode DSPI timing (full voltage range) (continued)
Num Description Min. Max. Unit Notes
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
4
ns 3
DS5 DSPI_SCK to DSPI_SOUT valid 10 ns
DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 ns
DS7 DSPI_SIN to DSPI_SCK input setup 20.5 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 18. DSPI classic SPI timing — master mode
Table 34. Slave mode DSPI timing (full voltage range)
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Frequency of operation 6.25 MHz
DS9 DSPI_SCK input cycle time 8 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS11 DSPI_SCK to DSPI_SOUT valid 20 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 19 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 19 ns
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 49
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 19. DSPI classic SPI timing — slave mode
6.8.6 I2C switching specifications
See General switching specifications.
6.8.7 UART switching specifications
See General switching specifications.
6.8.8 Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 35. I2S/SAI master mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
15 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 15 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
50 Freescale Semiconductor, Inc.
Table 35. I2S/SAI master mode timing (continued)
Num. Characteristic Min. Max. Unit
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
25 ns
S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 ns
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 20. I2S/SAI timing — master modes
Table 36. I2S/SAI slave mode timing
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
10 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 29 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 10 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 21 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 51
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 21. I2S/SAI timing — slave modes
6.8.9 VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 62.5 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
45 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 45 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
75 ns
S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 ns
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
52 Freescale Semiconductor, Inc.
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 22. I2S/SAI timing — master modes
Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 87 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 30 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 72 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
Peripheral operating requirements and behaviors
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 53
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 23. I2S/SAI timing — slave modes
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package Then use this document number
81-pin MAPBGA 98ASA00344D
121-pin MAPBGA 98ASA00344D
8 Pinout
8.1 K21 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
Dimensions
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
54 Freescale Semiconductor, Inc.
NOTE
The analog input signals ADC0_SE10, ADC0_SE11,
ADC0_DP1, and ADC0_DM1 are available only for K11,
K12, K21, and K22 devices and are not present on K10 and
K20 devices.
The TRACE signals on PTE0, PTE1, PTE2, PTE3, and
PTE4 are available only for K11, K12, K21, and K22
devices and are not present on K10 and K20 devices.
If the VBAT pin is not used, the VBAT pin should be left
floating. Do not connect VBAT pin to VSS.
The FTM_CLKIN signals on PTB16 and PTB17 are
available only for K11, K12, K21, and K22 devices and is
not present on K10 and K20 devices. For K22D devices
this signal is on ALT4, and for K22F devices, this signal is
on ALT7.
The FTM0_CH2 signal on PTC5/LLWU_P9 is available
only for K11, K12, K21, and K22 devices and is not
present on K10 and K20 devices.
The I2C0_SCL signal on PTD2/LLWU_P13 and
I2C0_SDA signal on PTD3 are available only for K11,
K12, K21, and K22 devices and are not present on K10 and
K20 devices.
121
MAP
BGA
Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
E4 ADC0_SE10 ADC0_SE10 PTE0 SPI1_PCS1 UART1_TX TRACE_CLKOUT I2C1_SDA RTC_CLKOUT
E3 ADC0_SE11 ADC0_SE11 PTE1/
LLWU_P0
SPI1_SOUT UART1_RX TRACE_D3 I2C1_SCL SPI1_SIN
E2 ADC0_DP1 ADC0_DP1 PTE2/
LLWU_P1
SPI1_SCK UART1_CTS_b TRACE_D2
F4 ADC0_DM1 ADC0_DM1 PTE3 SPI1_SIN UART1_RTS_b TRACE_D1 SPI1_SOUT
H7 DISABLED PTE4/
LLWU_P2
SPI1_PCS0 UART3_TX TRACE_D0
G4 DISABLED PTE5 SPI1_PCS2 UART3_RX
E6 VDD VDD
G7 VSS VSS
K3 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN0 FTM0_FLT3
H4 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN1 LPTMR0_ALT3
A11 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_CTS_b I2C0_SDA
A10 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_RTS_b I2C0_SCL
L6 VSS VSS
F1 USB0_DP USB0_DP
F2 USB0_DM USB0_DM
Pinout
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 55
121
MAP
BGA
Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
G1 VOUT33 VOUT33
G2 VREGIN VREGIN
K1 ADC0_DP0 ADC0_DP0
K2 ADC0_DM0 ADC0_DM0
L1 ADC0_DP3 ADC0_DP3
L2 ADC0_DM3 ADC0_DM3
F5 VDDA VDDA
G5 VREFH VREFH
G6 VREFL VREFL
F6 VSSA VSSA
L3 /
CMP1_IN5/
CMP0_IN5
/
CMP1_IN5/
CMP0_IN5
K5 DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
L7 TAMPER0/
RTC_WAKEUP_
B
TAMPER0/
RTC_WAKEUP_
B
H5 TAMPER1 TAMPER1
J5 TAMPER2 TAMPER2
L4 XTAL32 XTAL32
L5 EXTAL32 EXTAL32
K6 VBAT VBAT
J6 JTAG_TCLK/
SWD_CLK/
EZP_CLK
PTA0 UART0_CTS_b/
UART0_COL_b
FTM0_CH5 JTAG_TCLK/
SWD_CLK
EZP_CLK
H8 JTAG_TDI/
EZP_DI
PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI
J7 JTAG_TDO/
TRACE_SWO/
EZP_DO
PTA2 UART0_TX FTM0_CH7 JTAG_TDO/
TRACE_SWO
EZP_DO
H9 JTAG_TMS/
SWD_DIO
PTA3 UART0_RTS_b FTM0_CH0 JTAG_TMS/
SWD_DIO
J8 NMI_b/
EZP_CS_b
PTA4/
LLWU_P3
FTM0_CH1 NMI_b EZP_CS_b
K7 DISABLED PTA5 USB_CLKIN FTM0_CH2 I2S0_TX_BCLK JTAG_TRST_b
K8 DISABLED PTA12 FTM1_CH0 I2S0_TXD0 FTM1_QD_PHA
L8 DISABLED PTA13/
LLWU_P4
FTM1_CH1 I2S0_TX_FS FTM1_QD_PHB
K9 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_RX_BCLK I2S0_TXD1
L9 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD0
J10 DISABLED PTA16 SPI0_SOUT UART0_CTS_b/
UART0_COL_b
I2S0_RX_FS I2S0_RXD1
H10 DISABLED PTA17 SPI0_SIN UART0_RTS_b I2S0_MCLK
Pinout
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
56 Freescale Semiconductor, Inc.
121
MAP
BGA
Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
L10 VDD VDD
K10 VSS VSS
L11 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0
K11 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 LPTMR0_ALT1
J11 RESET_b RESET_b
G11 ADC0_SE8 ADC0_SE8 PTB0/
LLWU_P5
I2C0_SCL FTM1_CH0 FTM1_QD_PHA
G10 ADC0_SE9 ADC0_SE9 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_PHB
G9 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_RTS_b FTM0_FLT3
G8 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_CTS_b/
UART0_COL_b
FTM0_FLT0
D10 DISABLED PTB10 SPI1_PCS0 UART3_RX FTM0_FLT1
C10 DISABLED PTB11 SPI1_SCK UART3_TX FTM0_FLT2
B11 DISABLED PTB12 UART3_RTS_b FTM1_CH0 FTM0_CH4 FTM1_QD_PHA
C11 DISABLED PTB13 UART3_CTS_b FTM1_CH1 FTM0_CH5 FTM1_QD_PHB
B10 DISABLED PTB16 SPI1_SOUT UART0_RX EWM_IN FTM_CLKIN0
E9 DISABLED PTB17 SPI1_SIN UART0_TX EWM_OUT_b FTM_CLKIN1
D9 DISABLED PTB18 FTM2_CH0 I2S0_TX_BCLK
C9 DISABLED PTB19 FTM2_CH1 I2S0_TX_FS
B9 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_EXTRG I2S0_TXD1
D8 ADC0_SE15 ADC0_SE15 PTC1/
LLWU_P6
SPI0_PCS3 UART1_RTS_b FTM0_CH0 I2S0_TXD0
C8 ADC0_SE4b/
CMP1_IN0
ADC0_SE4b/
CMP1_IN0
PTC2 SPI0_PCS2 UART1_CTS_b FTM0_CH1 I2S0_TX_FS
B8 CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_BCLK
G3 VSS VSS
E5 VDD VDD
A8 DISABLED PTC4/
LLWU_P8
SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT
D7 DISABLED PTC5/
LLWU_P9
SPI0_SCK LPTMR0_ALT2 I2S0_RXD0 CMP0_OUT FTM0_CH2
C7 CMP0_IN0 CMP0_IN0 PTC6/
LLWU_P10
SPI0_SOUT PDB0_EXTRG I2S0_RX_BCLK I2S0_MCLK
B7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_OUT I2S0_RX_FS
A7 CMP0_IN2 CMP0_IN2 PTC8 I2S0_MCLK
D6 CMP0_IN3 CMP0_IN3 PTC9 I2S0_RX_BCLK FTM2_FLT0
C6 DISABLED PTC10 I2C1_SCL I2S0_RX_FS
C5 DISABLED PTC11/
LLWU_P11
I2C1_SDA I2S0_RXD1
B6 DISABLED PTC12
A6 DISABLED PTC13
D5 DISABLED PTC16 UART3_RX
Pinout
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 57
121
MAP
BGA
Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
C4 DISABLED PTC17 UART3_TX
D4 DISABLED PTD0/
LLWU_P12
SPI0_PCS0 UART2_RTS_b
D3 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_b
C3 DISABLED PTD2/
LLWU_P13
SPI0_SOUT UART2_RX I2C0_SCL
B3 DISABLED PTD3 SPI0_SIN UART2_TX I2C0_SDA
A3 ADC0_SE21 ADC0_SE21 PTD4/
LLWU_P14
SPI0_PCS1 UART0_RTS_b FTM0_CH4 EWM_IN
A2 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_b/
UART0_COL_b
FTM0_CH5 EWM_OUT_b
B2 ADC0_SE7b ADC0_SE7b PTD6/
LLWU_P15
SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_FLT0
A1 ADC0_SE22 ADC0_SE22 PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1
F3 NC NC
H1 NC NC
H2 NC NC
J1 NC NC
J2 NC NC
J3 NC NC
H3 NC NC
K4 NC NC
H6 NC NC
J9 NC NC
J4 NC NC
H11 NC NC
F11 NC NC
E11 NC NC
D11 NC NC
E10 NC NC
F10 NC NC
F9 NC NC
F8 NC NC
E8 NC NC
E7 NC NC
F7 NC NC
A5 NC NC
B5 NC NC
B4 NC NC
A4 NC NC
A9 NC NC
B1 NC NC
Pinout
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
58 Freescale Semiconductor, Inc.
121
MAP
BGA
Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
C2 NC NC
C1 NC NC
D2 NC NC
D1 NC NC
E1 NC NC
8.2 K21 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
Pinout
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 59
1
A PTD7
B NC
C NC
D NC
E NC
F USB0_DP
G VOUT33
H NC
J NC
K ADC0_DP0
1
L ADC0_DP3
2
PTD5
PTD6/
LLWU_P15
NC
NC
PTE2/
LLWU_P1
USB0_DM
VREGIN
NC
NC
ADC0_DM0
2
ADC0_DM3
3
PTD4/
LLWU_P14
PTD3
PTD2/
LLWU_P13
PTD1
PTE1/
LLWU_P0
NC
VSS
NC
NC
PTE16
3
VREF_OUT/
CMP1_IN5/
CMP0_IN5
4
NC
NC
PTC17
PTD0/
LLWU_P12
PTE0
PTE3
PTE5
PTE17
NC
NC
4
XTAL32
5
NC
NC
PTC11/
LLWU_P11
PTC16
VDD
VDDA
VREFH
TAMPER1
TAMPER2
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
5
EXTAL32
6
PTC13
PTC12
PTC10
PTC9
VDD
VSSA
VREFL
NC
PTA0
VBAT
6
VSS
7
PTC8
PTC7
PTC6/
LLWU_P10
PTC5/
LLWU_P9
NC
NC
VSS
PTE4/
LLWU_P2
PTA2
PTA5
7
TAMPER0/
RTC_
WAKEUP_B
8
PTC4/
LLWU_P8
PTC3/
LLWU_P7
PTC2
PTC1/
LLWU_P6
NC
NC
PTB3
PTA1
PTA4/
LLWU_P3
PTA12
8
PTA13/
LLWU_P4
9
NC
PTC0
PTB19
PTB18
PTB17
NC
PTB2
PTA3
NC
PTA14
9
PTA15
10
PTE19
PTB16
PTB11
PTB10
NC
NC
PTB1
PTA17
PTA16
VSS
10
VDD
11
APTE18
BPTB12
CPTB13
DNC
ENC
FNC
G
PTB0/
LLWU_P5
HNC
JRESET_b
KPTA19
11
LPTA18
Figure 24. K21 121 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 39. Revision History
Rev. No. Date Substantial Changes
1 6/2012 Alpha customer release.
1.1 6/2012 In Table 6, "Power consumption operating behaviors", changed the units of IDD_VLLS2,
IDD_VLLS1, IDD_VLLS0, and IDD_VBAT from nA to μA.
Table continues on the next page...
Revision History
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
60 Freescale Semiconductor, Inc.
Table 39. Revision History (continued)
Rev. No. Date Substantial Changes
2 7/2012 Updated section "Power consumption operating behaviors".
Updated section "Flash timing specifications — program and erase".
Updated section "Flash timing specifications — commands".
Removed the 32K ratio from "Write endurance" in section "Reliability specifications".
Updated IDDstby maximum value in section "VREG electrical specifications".
Added the charts in section "Diagram: Typical IDD_RUN operating behavior".
3 8/2012 Updated section "Power consumption operating behaviors".
Updated section "EMC radiated emissions operating behaviors".
Updated section "MCG specifications".
Added applicable notes in section "Signal Multiplexing and Pin Assignments".
4 8/2013 Updated section "Power consumption operating behaviors"
Updated section "MCG specifications"
Updated section "16-bit ADC operating conditions"
Added section "Small package marking"
Revision History
K21 Sub-Family Data Sheet, Rev. 4, 08/2013.
Freescale Semiconductor, Inc. 61
Document Number: K21P121M50SF4
Rev. 4
08/2013
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customers technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners. ARM and Cortex
are the registered trademarks of ARM Limited.
© 2012-2013 Freescale Semiconductor, Inc.