SCBS133F - MAY 1992 - REVISED OCTOBER 2003 D Supports Mixed-Mode Signal Operation D D D D D D (5-V Input and Output Voltages With 3.3-V VCC ) Supports Unregulated Battery Operation Down to 2.7 V Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25C Ioff Supports Partial-Power-Down Mode Operation Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) D, DB, NS, OR PW PACKAGE (TOP VIEW) 1OE 1A 1Y 2OE 2A 2Y GND 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VCC 4OE 4A 4Y 3OE 3A 3Y description/ordering information This bus buffer is designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. The SN74LVT125 features independent line drivers with 3-state outputs. Each output is in the high-impedance state when the associated output-enable (OE) input is high. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ORDERING INFORMATION PACKAGE TA TOP-SIDE MARKING Tube SN74LVT125D Tape and reel SN74LVT125DR SOP - NS Tape and reel SN74LVT125NSR LVT125 SSOP - DB Tape and reel SN74LVT125DBR LX125 Tube SN74LVT125PW Tape and reel SN74LVT125PWR SOIC - D -40C to 85C ORDERABLE PART NUMBER TSSOP - PW LVT125 LX125 Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated !"#$ % &'!!($ #% )'*+&#$ ,#$( !,'&$% &!" $ %)(&&#$% )(! $-( $(!"% (.#% %$!'"($% %$#,#!, /#!!#$0 !,'&$ )!&(%%1 ,(% $ (&(%%#!+0 &+',( $(%$1 #++ )#!#"($(!% POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 SCBS133F - MAY 1992 - REVISED OCTOBER 2003 FUNCTION TABLE (each buffer) INPUTS OE A OUTPUT Y L H H L L L H X Z logic diagram (positive logic) 1OE 1A 2OE 2A 3OE 3A 4OE 4A 1 2 3 1Y 4 5 6 2Y 10 9 8 3Y 13 12 11 4Y absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 7 V Voltage range applied to any output in the high state or power-off state, VO (see Note 1) . . . . -0.5 V to 7 V Current into any output in the low state, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA Current into any output in the high state, IO (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Package thermal impedance, JA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86C/W DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This current flows only when the output is in the high state and VO > VCC. 3. The package thermal impedance is calculated in accordance with JESD 51-7. 2 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SCBS133F - MAY 1992 - REVISED OCTOBER 2003 recommended operating conditions (see Note 4) MIN MAX 2.7 3.6 UNIT VCC VIH Supply voltage VIL VI Low-level input voltage Input voltage 5.5 V IOH IOL High-level output current -32 mA t /v Input transition rise or fall rate High-level input voltage 2 V 0.8 Low-level output current Outputs enabled V V 64 mA 10 ns / V TA Operating free-air temperature -40 85 C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK TEST CONDITIONS MIN TYP MAX UNIT -1.2 V VCC = 2.7 V, VCC = MIN to MAX, II = -18 mA IOH = -100 A VCC = 2.7 V, VCC = 3 V IOH = - 8 mA IOH = - 32 mA IOL = 100 A IOL = 24 mA 0.2 VCC = 2.7 V IOL = 16 mA IOL = 32 mA 0.4 VCC = 3 V IOL = 64 mA VI = 5.5 V 0.55 VCC = 0 or MAX, VCC = 3.6 V VI = VCC or GND VI = VCC Ioff VCC = 0, VI = 0 VI or VO = 0 to 4.5 V II(hold) VCC = 3 V VI = 0.8 V VI = 2 V IOZH IOZL VCC = 3.6 V, VCC = 3.6 V, VO = 3 V VO = 0.5 V VOH VOL II VCC-0.2 2.4 0.5 V 0.5 10 1 Control inputs 1 Data inputs 75 Data inputs VCC = 3.6 V, VI = VCC or GND IO = 0, ICC VCC = 3 V to 3.6 V, One input at VCC - 0.6 V, Ci VI = 3 V or 0 VO = 3 V or 0 Outputs low Outputs disabled A A -5 100 Outputs high ICC V 2 A A A -75 0.12 5 A -5 A 0.19 4.5 7 0.12 0.19 Other inputs at VCC or GND 0.2 mA mA 4 pF Co 8 All typical values are at VCC = 3.3 V, TA = 25C. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. pF POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 3 SCBS133F - MAY 1992 - REVISED OCTOBER 2003 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tPLH tPHL A Y tPZH tPZL OE Y tPHZ tPLZ OE Y PARAMETER All typical values are at VCC = 3.3 V, TA = 25C. 4 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 VCC = 3.3 V 0.3 V MIN TYP MAX VCC = 2.7 V MIN UNIT MAX 1 2.7 4 4.5 1 2.9 3.9 4.9 1 3.4 4.7 6 1.1 3.4 4.7 6.5 1.8 3.7 5.1 5.7 1.3 2.6 4.5 4 ns ns ns SCBS133F - MAY 1992 - REVISED OCTOBER 2003 PARAMETER MEASUREMENT INFORMATION 6V S1 500 From Output Under Test Open GND CL = 50 pF (see Note A) TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 6V GND 500 2.7 V LOAD CIRCUIT FOR OUTPUTS 1.5 V Timing Input 0V tw tsu 2.7 V Input 1.5 V th 2.7 V 1.5 V 1.5 V Data Input 1.5 V 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 2.7 V Input 1.5 V 0V VOH 1.5 V Output 1.5 V VOL tPLH tPHL VOH Output 1.5 V 1.5 V VOL 1.5 V 1.5 V 0V tPZL tPHL tPLH 2.7 V Output Control 1.5 V tPLZ Output Waveform 1 S1 at 6 V (see Note B) Output Waveform 2 S1 at GND (see Note B) VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 1.5 V tPZH 3V VOL + 0.3 V VOL tPHZ 1.5 V VOH - 0.3 V VOH 0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 PACKAGE OPTION ADDENDUM www.ti.com 31-Jul-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty 50 SN74LVT125D NRND SOIC D 14 SN74LVT125DBLE OBSOLETE SSOP DB 14 SN74LVT125DBR NRND SSOP DB 14 2000 SN74LVT125DBRG4 NRND SSOP DB 14 SN74LVT125DG4 NRND SOIC D SN74LVT125DR ACTIVE SOIC SN74LVT125DRG4 ACTIVE SN74LVT125NSR Eco Plan (2) Green (RoHS & no Sb/Br) TBD Lead/ Ball Finish MSL Peak Temp Samples (Requires Login) CU NIPDAU Level-1-260C-UNLIM Samples Not Available Call TI Replaced by SN74LVT125DBR Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples NRND SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available SN74LVT125PW NRND TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available SN74LVT125PWG4 NRND TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Samples Not Available SN74LVT125PWLE OBSOLETE TSSOP PW 14 SN74LVT125PWR ACTIVE TSSOP PW 14 2000 SN74LVT125PWRG4 ACTIVE TSSOP PW 14 2000 TBD Call TI (3) Call TI Replaced by SN74LVT125PWR Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples (1) Call TI The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 31-Jul-2010 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVT125 : * Automotive: SN74LVT125-Q1 * Enhanced Product: SN74LVT125-EP NOTE: Qualified Version Definitions: * Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects * Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74LVT125DBR SSOP DB 14 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 SN74LVT125DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74LVT125DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74LVT125NSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 SN74LVT125PWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LVT125DBR SSOP DB 14 2000 367.0 367.0 38.0 SN74LVT125DR SOIC D 14 2500 333.2 345.9 28.6 SN74LVT125DR SOIC D 14 2500 367.0 367.0 38.0 SN74LVT125NSR SO NS 14 2000 367.0 367.0 38.0 SN74LVT125PWR TSSOP PW 14 2000 367.0 367.0 35.0 Pack Materials-Page 2 MECHANICAL DATA MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0-8 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated