Feb. 2009
CM400DU-24NFH
APPLICATION
High frequency switching use (30kHz to 60kHz).
Gradient amplifier, Induction heating, power supply, etc.
MITSUBISHI IGBT MODULES
CM400DU-24NFH
HIGH POWER SWITCHING USE
¡IC ...................................................................400A
¡VCES ......................................................... 1200V
¡Insulated Type
¡2-elements in a pack
OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm
G1 E1 E2 G2
C1
E2
C2E1
3-M6 NUTS
4-φ6.5 MOUTING HOLES
L A B E L
(8.5)
(22.2)
9.25(10)
(8.5)
(9)
(9)
93
±0.25
62
±0.25
110
17.5
18.25
80
615 6
29
+1.0
–0.5
21.2 8.5
25
18 18 1877
14 14 14
25 21.5
TAB #110. t = 0.5
G2E2E1G1
C2E1 E2 C1
CIRCUIT DIAGRAM
Feb. 2009
2
VCE = VCES, VGE = 0V
±VGE = VGES, VCE = 0V
Tj = 25°C
Tj = 125°C
VCC = 600V, IC = 400A, VGE = 15V
VCC = 600V, IC = 400A
VGE = ±15V
RG = 0.78, Inductive load
IE = 400A
IE = 400A, VGE = 0V
IGBT part (1/2 module)
FWDi part (1/2 module)
Case to heat sink, Thermal compound Applied
*2
(1/2 module)
IGBT part (1/2 module)
FWDi part (1/2 module)
IC = 40mA, VCE = 10V
IC = 400A, VGE = 15V
VCE = 10V
VGE = 0V
Gate-emitter threshold voltage
Thermal resistance*1
Collector-emitter voltage
Gate-emitter voltage
Maximum collector dissipation
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
Weight
1200
±20
400
800
400
800
1040
2450
–40 ~ +150
–40 ~ +125
2500
3.5 ~ 4.5
3.5 ~ 4.5
580
MITSUBISHI IGBT MODULES
CM400DU-24NFH
HIGH POWER SWITCHING USE
V
V
A
A
A
A
W
W
°C
°C
Vrms
N • m
N • m
g
1
1.4
6.5
63
5.3
1.2
300
100
500
150
250
3.5
0.12
0.23
0.051*3
0.093*3
7.8
mA
µA
nF
nF
nF
nC
ns
ns
ns
ns
µC
V
K/W
K/W
K/W
K/W
K/W
5.0
5.0
1800
16
0.02
0.78
6V
V
4.5 7.5
ns
Collector cutoff current
Gate leakage current
Collector-emitter saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
Emitter-collector voltage
Contact thermal resistance
Thermal resistance*4
External gate resistance
ICES
IGES
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (
Note 1
)
Qrr (
Note 1
)
VEC(
Note 1
)
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Rth(j-c’)Q
Rth(j-c’)R
RG
Symbol Parameter
VGE(th)
VCE(sat)
*1 : Case temperature (TC) measured point is shown in page OUTLINE DRAWING.
*2 : Typical value is measured by using thermally conductive grease of
λ
= 0.9[W/(m • K)].
*3 : If you use this value, Rth(f-a) should be measured just under the chips.
*4 : Case temperature (TC’) measured point is just under the chips.
Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter-collector free-wheel diode (FWDi).
2. Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating.
3. Junction temperature (Tj) should not increase beyond 150°C.
4. No short circuit capability is designed.
G-E Short
C-E Short
Operation (Note 2)
Pulse (Note 2)
Operation (Note 2)
Pulse (Note 2)
TC = 25°C
TC’ = 25°C*4
Terminals to base plate, f = 60Hz, AC 1 minute
Main terminals M6 screw
Mounting M6 screw
Typical value
Symbol Parameter
Collector current
Emitter current
Mounting torque
Conditions UnitRatings
VCES
VGES
IC
ICM
IE (
Note 1
)
IEM (
Note 1
)
PC (
Note 3
)
PC (
Note 3
)
Tj
Tstg
Viso
Unit
Typ.
Limits
Min. Max.
Test conditions
MAXIMUM RATINGS (Tj = 25°C, unless otherwise specified)
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)
Feb. 2009
3
MITSUBISHI IGBT MODULES
CM400DU-24NFH
HIGH POWER SWITCHING USE
14
10
–1
10
0
10
1
10
2
10
3
2
3
5
7
2
3
5
7
2
3
5
7
10
–1
210
0
357 2 10
1
357 2 10
2
357
2
3
5
7
V
GE = 0V
Cies
Coes
Cres
0 5 10 15 20
VCE = 10V
0
1
6
7
8
9
2
3
4
5
0 100 200 300 400 700 800500 600
Tj = 25°C
Tj = 125°C
VGE = 15V
0
100
200
300
400
500
600
700
800
0246810 0
100
200
300
400
500
600
700
800
VGE=20
(V)
Tj = 25°C
12
9
8
11
10
13
0
2
4
6
8
10
61014188121620
Tj = 25°C
IC = 800A
IC = 400A
IC = 160A
10
1
10
2
2
3
5
7
012 435
10
3
2
3
5
7
T
j = 25°C
Tj = 125°C
15
Tj = 25°C
Tj = 125°C
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
EMITTER CURRENT IE (A)
EMITTER-COLLECTOR VOLTAGE VEC (V)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
CAPACITANCE Cies, Coes, Cres (nF)
COLLECTOR-EMITTER VOLTAGE VCE (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT IC (A)
TRANSFER CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT IC (A)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
GATE-EMITTER VOLTAGE VGE (V)
PERFORMANCE CURVES
Feb. 2009
4
MITSUBISHI IGBT MODULES
CM400DU-24NFH
HIGH POWER SWITCHING USE
10
1
10
2
23 57
10
3
23 57
10
1
10
2
2
3
5
7
10
3
2
3
5
7
Tj = 25°C
trr
Irr
10
1
10
2
23 57
10
3
23 57
2
3
5
7
2
3
5
7
10
0
10
2
10
1
10
3
2
3
5
7
td(off)
td(on)
tf
tr
0
5
10
15
20
0 500 1000 1500 2000 2500
VCC = 600V
VCC = 400V
IC = 400A
Conditions:
VCC = 600V
VGE = ±15V
RG = 0.78
Tj = 125°C
Inductive load
Conditions:
VCC = 600V
VGE = ±15V
RG = 0.78
Tj = 25°C
Inductive load
10
–3
10–5 10–4
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10–3
23 57 23 57 23 57 23 57
101
10–2 10–1 100
10–3
10
–3
7
5
3
2
10
–2
7
5
3
2
10
–1
23 57 23 57
Single Pulse
TC = 25°C
Per unit base =
R
th(j–c)
= 0.12K/W
10
–3
10–5 10–4
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10–3
23 57 23 57 23 57 23 57
101
10–2 10–1 100
10–3
10
–3
7
5
3
2
10
–2
7
5
3
2
10
–1
23 57 23 57
Single Pulse
TC = 25°C
Per unit base =
R
th(j–c)
= 0.23K/W
10
1
10
2
2
3
5
7
10
3
2
3
5
7
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part)
TIME (s)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIME (ns)
COLLECTOR CURRENT IC (A)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
REVERSE RECOVERY TIME trr (ns)
EMITTER CURRENT IE (A)
REVERSE RECOVERY CURRENT Irr (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
GATE CHARGE QG (nC)
TIME (s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)