HEXFET® Power MOSFET
S
D
G
VDSS = 55V
RDS(on) = 5.0m
ID = 174A
Description
8/14/02
www.irf.com 1
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Benefits
AUTOMOTIVE MOSFET IRFBA1405P
Typical Applications
Electric Power Steering (EPS)
Anti-lock Braking System (ABS)
Wiper Control
Climate Control
Power Door
Super-220
Specifically designed for Automotive applications, this Stripe Planar
design of HEXFET® Power MOSFETs utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon area.
Additional features of this MOSFET are a 175oC junction operating
temperature, fast switching speed and improved ruggedness in
single and repetitive avalanche. The Super-220 TM is a package that
has been designed to have the same mechanical outline and pinout
as the industry standard TO-220 but can house a considerably
larger silicon die. The result is significantly increased current
handling capability over both the TO-220 and the much larger TO-
247 package. The combination of extremely low on-resistance
silicon and the Super-220 TM package makes it ideal to reduce the
component count in multiparalled TO-220 applications, reduce
system power dissipation, upgrade existing designs or have TO-247
performance in a TO-220 outline. This package has been designed
to meet automotive, Q101, qualification standard.
These benefits make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other
applications.
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 174
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 123A
IDM Pulsed Drain Current 680
PD @TC = 25°C Power Dissipation 330 W
Linear Derating Factor 2.2 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy560 mJ
IAR Avalanche Current See Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergymJ
dv/dt Peak Diode Recovery dv/dt 5.0 V/ns
TJOperating Junction and -40 to + 175
TSTG Storage Temperature Range -55 to + 175
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Recommended clip force 20 N
°C
PD -94111A
http://store.iiic.cc/
IRFBA1405P
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.057 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 4.3 5.0 mVGS = 10V, ID = 101A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 69 ––– ––– S VDS = 25V, ID = 110A
––– ––– 20 µA VDS = 55V, VGS = 0V
––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge ––– 17 0 260 ID = 101A
Qgs Gate-to-Source Charge ––– 44 66 nC VDS = 44V
Qgd Gate-to-Drain ("Miller") Charge ––– 62 93 VGS = 10V
td(on) Turn-On Delay Time ––– 13 ––– VDD = 38V
trRise Time ––– 190 –– ID = 110A
td(off) Turn-Off Delay Time ––– 130 ––– RG = 1.1
tfFall Time ––– 110 ––– VGS = 10V
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5480 ––– VGS = 0V
Coss Output Capacitance ––– 1210 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance –– 280 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 5210 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 900 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 1500 ––– VGS = 0V, VDS = 0V to 44V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 101A, VGS = 0V
trr Reverse Recovery Time ––– 88 130 ns TJ = 25°C, IF = 101A
Qrr Reverse RecoveryCharge ––– 25 0 380 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
174
680
A
Thermal Resistance Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45 °C/W
RθCS Case-to-Sink, Flat, Greased Surface 0.50 –––
RθJA Junction-to-Ambient –– 58
http://store.iiic.cc/
IRFBA1405P
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20µs PU LSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
10
100
1000
0.1 1 10 100
20µs PU LSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
4 6 8 10 12
V = 2 5 V
20µs PULSE WIDTH
DS
V , Gate-to-Sou rce Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
169A
http://store.iiic.cc/
IRFBA1405P
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
060 120 180 240 300
0
4
8
12
16
20
Q , Total G a te C harge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
101A
V = 27V
DS
V = 44V
DS
1
10
100
1000
0.0 0.5 1.0 1.5 2.0 2.5 3.0
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
110 100
VDS, Dr ain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + Cgd
1
10
100
1000
10000
1 10 100
OPERATION IN THIS AR EA LIMITED
BY RDS(on)
Single Pulse
T
T = 175 C
= 25 C
°°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
http://store.iiic.cc/
IRFBA1405P
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
90%
10%
VGS t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25 50 75 100 125 150 175
0
40
80
120
160
200
T , Case Temperature ( C )
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1
Notes:
1. D u ty fa c to r D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pul se Durati on ( s ec)
Thermal R esponse (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
http://store.iiic.cc/
IRFBA1405P
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperatur e ( ° C )
1.5
2.0
2.5
3.0
3.5
4.0
VGS(th) , Variace ( V )
ID = 250µA
25 50 75 100 125 150 175
0
200
400
600
800
1000
1200
Start ing T , Junction Temperat ure ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
41A
71A
101A
http://store.iiic.cc/
IRFBA1405P
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Dut y Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperatur e (°C)
0
100
200
300
400
500
600
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 101A
http://store.iiic.cc/
IRFBA1405P
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
http://store.iiic.cc/
IRFBA1405P
www.irf.com 9
Super-220 Package Outline
L EAD ASSIGNMENTS
2 - DRAI N
1 - GATE
MOS FET
4 - DRAI N
3 - SOURCE 4 - COLLECTOR
3 - EMITTER
2 - COLLECTOR
1 - GATE
IGBT
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting TJ = 25°C, L = 0.11mH
RG = 25, IAS = 101A. (See Figure 12).
ISD 101A, di/dt 210A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 400µs; duty cycle 2%.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .Refer to AN-1001
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 95A.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
2X
A
123
3X
0.25 [.010] B A
B
4X
4
0.25 [.010] B A
3.00 [.118]
2.50 [.099]
14.5 0 [ . 570]
13.0 0 [ . 512]
4.00 [.157]
3.50 [.138]
1.30 [.051]
0.90 [.036]
2.5 5 [ . 100]
1.00 [.039]
0.70 [.028]
5.00 [.196]
4.00 [.158]
11.0 0 [. 433]
10.0 0 [. 394]
1.5 0 [ . 059]
0.50 [.020]
15.0 0 [ . 590]
14.0 0 [ . 552]
9.00 [.354]
8.00 [.315]
13. 50 [ . 531 ]
12. 50 [ . 493 ]
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994
.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
NOTES:
4. OU TLINE CONF OR MS TO JEDEC OUTL INE TO-273AA.
Data and specifications subject to change without notice.
This product has been designed and qualified for the automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 8/02
Super-220 not recommended for surface mount application
http://store.iiic.cc/