Document Number: 91329 www.vishay.com
S11-1055-Rev. C, 30-May-11 1
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
Power MOSFET
IRLZ44S, SiHLZ44S
Vishay Siliconix
FEATURES
Halogen-free According to IEC 61249-2-21
Definition
Surface Mount
Available in Tape and Reel
Dynamic dV/dt Rating
Logic-Level Gate Drive
•R
DS(on) Specified at VGS = 4 V and 5 V
175 °C Operating Temperature
•Fast Switching
Compliant to RoHS Directive 2002/95/EC
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The D2PAK (TO-263) is a surface mount power package
capable of accommodating die sizes up to HEX-4. It
provides the highest power capability and the lowest
possible on-resistance in any existing surface mount
package. The D2PAK (TO-263) is suitable for high current
applications because of its low internal connection
resistance and can dissipate up to 2.0 W in a typical surface
mount application.
Note
a. See device orientation.
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 25 V, starting TJ = 25 °C, L = 179 μH, Rg = 25 , IAS = 51 A (see fig. 12).
c. ISD 51 A, dI/dt 250 A/μs, VDD VDS, TJ 175 °C.
d. 1.6 mm from case.
e. When mounted on 1" square PCB (FR-4 or G-10 material).
f. Current limited by the package, (die current = 51 A).
PRODUCT SUMMARY
VDS (V) 60
RDS(on) ()V
GS = 5.0 V 0.028
Qg (Max.) (nC) 66
Qgs (nC) 12
Qgd (nC) 43
Configuration Single
N-Channel MOSFET
G
D
S
D
2
PAK (TO-263)
GD
S
ORDERING INFORMATION
Package D2PAK (TO-263) D2PAK (TO-263)
Lead (Pb)-free and Halogen-free SiHLZ44S-GE3 SiHLZ44STRR-GE3a
Lead (Pb)-free IRLZ44SPbF IRLZ44STRRPbFa
SiHLZ44S-E3 SiHLZ44STR-E3a
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage VDS 60 V
Gate-Source Voltage VGS ± 10
Continuous Drain Currentf
VGS at 5.0 V TC = 25 °C ID
50
A
Continuous Drain Current TC = 100 °C 36
Pulsed Drain CurrentaIDM 200
Linear Derating Factor 1.0 W/°C
Linear Derating Factor (PCB Mount)e0.025
Single Pulse Avalanche EnergybEAS 400 mJ
Maximum Power Dissipation TC = 25 °C PD
150 W
Maximum Power Dissipation (PCB Mount)eTA = 25 °C 3.7
Peak Diode Recovery dV/dtcdV/dt 4.5 V/ns
Operating Junction and Storage Temperature Range TJ, Tstg - 55 to + 175 °C
Soldering Recommendations (Peak Temperature)dfor 10 s 300d
* Pb containing terminations are not RoHS compliant, exemptions may apply
www.vishay.com Document Number: 91329
2S11-1055-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width 300 μs; duty cycle 2 %.
c. Current limited by the package, (Die Current = 51 A).
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient RthJA -62
°C/W
Maximum Junction-to-Ambient
(PCB Mount)aRthJA -40
Maximum Junction-to-Case (Drain) RthJC -1.0
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage VDS VGS = 0, ID = 250 μA 60 - - V
VDS Temperature Coefficient VDS/TJ Reference to 25 °C, ID = 1 mA - 0.070 - V/°C
Gate-Source Threshold Voltage VGS(th) VDS = VGS, ID = 250 μA 1.0 - 2.0 V
Gate-Source Leakage IGSS V
GS = ± 10 V - - ± 100 nA
Zero Gate Voltage Drain Current IDSS
VDS = 60 V, VGS = 0 V - - 25 μA
VDS = 48 V, VGS = 0 V, TJ = 150 °C - - 250
Drain-Source On-State Resistance RDS(on) VGS = 5.0 V ID = 31 Ab- - 0.028
VGS = 4.0 V ID = 25 Ab- - 0.039
Forward Transconductance gfs VDS = 25 V, ID = 31 Ab23 - - S
Dynamic
Input Capacitance Ciss VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
- 3300 -
pFOutput Capacitance Coss - 1200 -
Reverse Transfer Capacitance Crss - 200 -
Total Gate Charge Qg
VGS = 5.0 V ID = 51 A, VDS = 48 V,
see fig. 6 and 13b
--66
nC Gate-Source Charge Qgs --12
Gate-Drain Charge Qgd --43
Turn-On Delay Time td(on)
VDD = 30 V, ID = 51 A,
Rg = 4.6 , RD = 0.56 , see fig. 10b
-17-
ns
Rise Time tr - 230 -
Turn-Off Delay Time td(off) -42-
Fall Time tf - 110 -
Internal Drain Inductance LD Between lead,
6 mm (0.25") from
package and center of
die contact
-4.5-
nH
Internal Source Inductance LS-7.5-
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current ISMOSFET symbol
showing the
integral reverse
p - n junction diode
--50
c
A
Pulsed Diode Forward CurrentaISM - - 200
Body Diode Voltage VSD TJ = 25 °C, IS = 51 A, VGS = 0 Vb--2.5V
Body Diode Reverse Recovery Time trr TJ = 25 °C, IF = 51 A, dI/dt = 100 A/μsb- 130 180 ns
Body Diode Reverse Recovery Charge Qrr - 0.84 1.3 μC
Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
D
S
G
S
D
G
Document Number: 91329 www.vishay.com
S11-1055-Rev. C, 30-May-11 3
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 2 - Typical Output Characteristics, TC = 150 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com Document Number: 91329
4S11-1055-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 8 - Maximum Safe Operating Area
Document Number: 91329 www.vishay.com
S11-1055-Rev. C, 30-May-11 5
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
Fig. 9 - Maximum Drain Current vs. Case Temperature
Fig. 10a - Switching Time Test Circuit
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Pulse width 1 µs
Duty factor 0.1 %
RD
VGS
Rg
D.U.T.
5 V
+
-
VDS
VDD
VDS
90 %
10 %
VGS
td(on) trtd(off) tf
www.vishay.com Document Number: 91329
6S11-1055-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit
Rg
IAS
0.01 Ω
tp
D.U.T.
L
VDS
+
-VDD
5 V
Vary tp to obtain
required IAS
I
AS
V
DS
V
DD
V
DS
t
p
QGS QGD
QG
VG
Charge
5 V
D.U.T.
3 mA
VGS
VDS
IGID
0.3 µF
0.2 µF
50 kΩ
12 V
Current regulator
Current sampling resistors
Same type as D.U.T.
+
-
Document Number: 91329 www.vishay.com
S11-1055-Rev. C, 30-May-11 7
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
IRLZ44S, SiHLZ44S
Vishay Siliconix
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91329.
P.W. Period
dI/dt
Diode recovery
dV/dt
Ripple 5 %
Body diode forward drop
Re-applied
voltage
Reverse
recovery
current
Body diode forward
current
VGS = 10 Va
ISD
Driver gate drive
D.U.T. lSD waveform
D.U.T. VDS waveform
Inductor current
D = P.W.
Period
+
-
+
+
+
-
-
-
Peak Diode Recovery dV/dt Test Circuit
VDD
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
D.U.T. Circuit layout considerations
Low stray inductance
Ground plane
Low leakage inductance
current transformer
Rg
Note
a. VGS = 5 V for logic level devices
VDD
AN826
Vishay Siliconix
Document Number: 73397
11-Apr-05
www.vishay.com
1
RECOMMENDED MINIMUM PADS FOR D2PAK: 3-Lead
0.635
(16.129)
Recommended Minimum Pads
Dimensions in Inches/(mm)
0.420
(10.668)
0.355
(9.017)
0.145
(3.683)
0.135
(3.429)
0.200
(5.080)
0.050
(1.257)
Return to Index
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 12-Mar-12 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to
obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.