SILICON EPITAXIAL POWER TRANSISTORS

NPN silicon power transistors in a SOT186 envelope with an electrically insulated mounting base.

They are intended for use in audio amplifier output stages, general purpose amplifiers, and high-speed switching applications.

PNP complements are TIP32F, TIP32AF, TIP32BF, TIP32CF and TIP32DF.

QUICK REFERENCE DATA TIP31F | 31AF 31BF 31CF 31**DF** 100 120 140 160 V Collector-base voltage (open emitter) **VCBO** max. 80 40 60 80 100 120 V Collector-emitter voltage (open base) **VCEO** max. Emitter-base voltage (open collector) 5 **VEBO** max. ٧ 3 DC collector current 1C Α max. 5 Peak collector current 1CM max. Α DC current gain 1C = 3 A; VCE = 4 V min. 10 hFE Small-signal current gain at f = 1 MHz hfe $I_C = 0.5 A$; $V_{CE} = 10 V$ min. 3 **MECHANICAL DATA** Dimensions in mm 10,2 max-Fig.1 SOT186. 4,4 max 5,7 max 2,9 max 3,0 Pinning 1 = base 2 = collector 7,9 7,5 3 = emitter 17 max 3,5 max 4,4 not tinned 13,5 1,5 max min 0,9 **⊕** Ø0,4 **M** 0,55 max 0,7 2,54 1,3 5,08 7295293.1 August 1991 769

TIP31F; 31AF TIP31BF; 31CF TIP31DF

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			TIP31F	31AF 31BF 31			31DF	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	160	V
Collector-emitter voltage (open base)	V _{CEO}	max.	40	60	80	100	120	v
Emitter-base voltage (open collector)	VEBO	max.	5					
DC collector current	IC	max.	3					
Peak collector current	^I CM	max.	5					
DC base current	lg	max.	1					
Total power dissipation up to T _h = 25 °C (note 1) up to T _h = 25 °C (note 2)	P _{tot} P _{tot}	max. max.	15 22					
Storage temperature range	T _{stg}		-65 to 150					oC
Junction temperature	Тj	max.	150					oC
THERMAL RESISTANCE								
From junction to internal heatsink	R _{th j-mb}	=	3.12					K/W
From junction to external heatsink (note 1)	R _{th j-h}	=	8.12					K/W
From junction to external heatsink (note 2)	R _{th j-h}	=	5.62					K/W
From junction to ambient	R _{th j-a}	=			55			K/W
INSULATION								
Voltage allowed between all terminals an external heatsink, peak value (note 3)		max.			1000			v
Insulation capacitance between collector and external heatsink	C _{c-h}	typ.	12					

Notes

- 1. Mounted without heatsink compound and 30 \pm 5 newtons pressure on centre of envelope,
- 2. Mounted with heatsink compound and 30 \pm 5 newtons pressure on centre of envelope.
- 3. Heatsink temperature T_h = 25 °C; relative humidity $R_H \le 75\%$; atmospheric pressure P_{amb} = 1013 mbar.

770 October 1988

CHARACTERISTICS

Th = 25 °C unless otherwise specified

			TIP31F 31AI		31BF	31CF	31CF 31DF	
Collector cut-off current								
1B = 0; VCE = 30 V	ICEO	max.	0.1	0.1	-	_	-	mΑ
$I_B = 0$; $V_{CE} = 60 \text{ V}$	CEO	max.	_	-	0.1	0.1	–	mΑ
IB = 0; VCE = 90 V	CEO	max.		-	_	-	1	mΑ
VBE = 0; VCE = VCBOmax	ICES	max.	0.2	0.2	0.2	0.2	0.2	mΑ
Emitter cut-off current								
IC = 0; VEB = 5 V	IEBO	max.	0.2	0.2	0.2	0.2	0.2	mΑ
DC current gain (note 1)								
IC = 1 A; VCE = 4 V	hFE	min.	25	25	25	25	25	
$I_C = 3 A, V_{CE} = 4 V$	hFE	min. max.	10 50	10 50	10 50	10 50	5 –	
Collector-emitter breakdown								
voltage (note 1)	M		40	00	-00	400	120	.,
$I_B = 0$; $I_C = 30 \text{ mA}$	V(BR)CEO	min.	40	60	80	100	120	V
Collector-emitter saturation voltage (note 1)								
$I_C = 3 A; I_B = 375 mA$	VCEsat	max.		1.2	1.2	1.2	<u> </u>	V
$I_C = 3 A$, $I_B = 750 mA$	CESAL	max.	-	-	-	- '	2.5	V
Base-emitter voltages (notes 1 and 2)				•			•	
I _C = 3 A; V _{CE} = 4 V	VBE	max.			1.8			٧
Small-signal current gain IC = 0.5 A; VCE = 10 V								
at 1 kHz	h _{fe}	min.			20			
at 1 MHz	''Te	min.			3			
Turn-off breakdown energy with inductive load (see Fig.3)								
$I_C = 1.8 A; L = 20 mH$	E(BR)	min.			32			mJ
Switching times (see Fig.2) IC = 1 A; IB on = -IB off = 0.1 A								
turn-on time	t	typ.			0.3			μs
turn-off time	t _{on}							•
turn-on time	^t off	typ.			1			μς

Notes

- 1. Measured under pulse conditions: $t_p = 300 \mu s$; $\delta = 2\%$.
- 2. VBE decreases by about 2.3 mV/K with increasing temperature.

October 1988

771

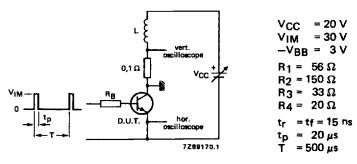


Fig.2 Switching times test circuit.

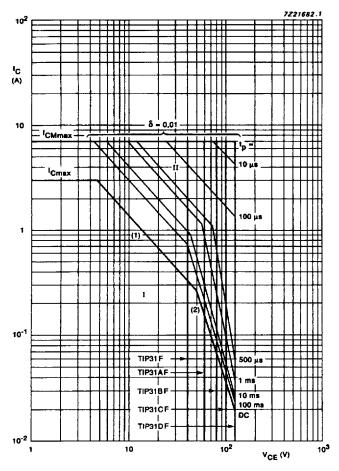



Fig.3 Test circuit for turn-off breakdown energy.

772 October 1988

- I Region of permissible DC operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
- (2) Second-breakdown limits.

Mounted without heatsink compound and 30 \pm 5 newtons pressure on the centre of the envelope.

Fig.4 Safe Operating Area, Tamb = 25 °C.

October 1988

773

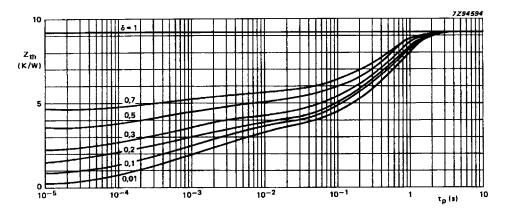


Fig.5 Pulse power rating chart; mounted without heatsink compound and 30 \pm 5 newtons pressure on the envelope.

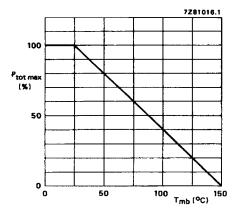


Fig.6 Total power dissipation.

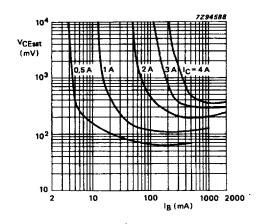


Fig.7 Typical collector-emitter saturation voltage; T $_{j}$ = 25 $^{o}\text{C}.$

774 October 1988

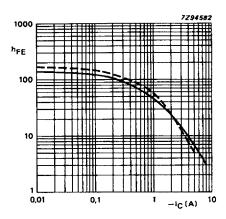


Fig.8 Typical DC current gain; V_{CE} = 4 V; T_j = 25 °C.

October 1988

775