5-1
FAST AND LS TTL DATA
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
The SN54/74LS390 and SN54/74LS393 each contain a pair of high-speed
4-stage ripple counters. Each half of the LS390 is partitioned into a
divide-by-two section and a divide-by five section, with a separate clock input
for each section. The two sections can be connected to count in the 8.4.2.1
BCD code or they can count in a biquinary sequence to provide a square wave
(50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last
three stages triggered in a ripple fashion. In both the LS390 and the LS393,
the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs.
Each half of each circuit type has a Master Reset input which responds to a
HIGH signal by forcing all four outputs to the LOW state.
Dual Versions of LS290 and LS293
LS390 has Separate Clocks Allowing ÷2, ÷2.5, ÷5
Individual Asynchronous Clear for Each Counter
Typical Max Count Frequency of 50 MHz
Input Clamp Diodes Minimize High Speed Termination Effects
CONNECTION DIAGRAM DIP (TOP VIEW)
SN54/74LS390
SN54/74LS393
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
14 13 12 11 10 9
123456
8
7
V
CC CP MR Q0Q1Q2Q3
CP MR Q0Q1Q2Q3GND
14 13 12 11 10 9
1234567
16 15
8
VCC
CP0
CP0MR Q0CP1Q2
Q1Q3
MR Q0CP1Q1Q2Q3GND
SN54/74LS390
SN54/74LS393
LOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
SN74LSXXXD SOIC
J SUFFIX
CERAMIC
CASE 620-09
N SUFFIX
PLASTIC
CASE 648-08
16 1
16
1
16 1
D SUFFIX
SOIC
CASE 751B-03
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
J SUFFIX
CERAMIC
CASE 632-08
N SUFFIX
PLASTIC
CASE 646-06
14 1
14
1
14 1
D SUFFIX
SOIC
CASE 751A-02
5-2
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
PIN NAMES LOADING (Note a)
HIGH LOW
CP Clock (Active LOW going edge)
Input to +16 (LS393) 0.5 U.L. 1.0 U.L.
CP0Clock (Active LOW going edge)
Input to ÷2 (LS390) 0.5 U.L. 1.0 U.L.
CP1Clock (Active LOW going edge)
Input to ÷5 (LS390) 0.5 U.L. 1.5 U.L.
MR Master Reset (Active HIGH) Input 0.5 U.L. 0.25 U.L.
Q0–Q3Flip-Flop outputs (Note b) 10 U.L. 5 (2.5) U.L.
NOTES:
a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b) Temperature Ranges.
FUNCTIONAL DESCRIPTION
Each half of the SN54/74LS393 operates in the Modulo 16
binary sequence, as indicated in the ÷16 Truth T able. The first
flip-flop is triggered by HIGH-to-LOW transitions of the CP
input signal. Each of the other flip-flops is triggered by a
HIGH-to-LOW transition of the Q output of the preceding
flip-flop. Thus state changes of the Q outputs do not occur
simultaneously. This means that logic signals derived from
combinations of these outputs will be subject to decoding
spikes and, therefore, should not be used as clocks for other
counters, registers or flip-flops. A HIGH signal on MR forces
all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a ÷5 section that is
independent except for the common MR function. The ÷5
section operates in 4.2.1 binary sequence, as shown in the ÷5
T ruth Table, with the third stage output exhibiting a 20% duty
cycle when the input frequency is constant. To obtain a ÷10
function having a 50% duty cycle output, connect the input
signal to CP1 and connect the Q3 output to the CP0 input; the
Q0 output provides the desired 50% duty cycle output. If the
input frequency is connected to CP0 and the Q0 output is
connected to CP1, a decade divider operating in the 8.4.2.1
BCD code is obtained, as shown in the BCD Truth T able. Since
the flip-flops change state asynchronously, logic signals
derived from combinations of LS390 outputs are also subject
to decoding spikes. A HIGH signal on MR forces all outputs
LOW and prevents counting.
SN54/74LS390 LOGIC DIAGRAM (one half shown)
SN54/74LS393 LOGIC DIAGRAM (one half shown)
CP1
CP0
MR
MR
CP
KCP J
C
DQKCP J
C
DQKCP J
C
DQKCP J
C
DQ
KCP J
C
DQ
KCP J
C
DQ
KCP J
C
DQ
KCP J
C
DQ
Q
0
Q
0
Q
1
Q
1
Q
2
Q
2
Q
3
Q
3
5-3
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
SN54/74LS390 BCD
TRUTH TABLE
(Input on CP0; Q0 CP1)
SN54/74LS390 ÷5
TRUTH TABLE
(Input on CP1)
SN54/74LS393
TRUTH TABLE
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
L
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
H
L
H
L
H
L
L
L
L
H
H
H
H
L
L
COUNT OUTPUTS
Q3Q2Q1
0
1
2
3
4
L
L
L
L
H
L
H
L
H
L
L
L
H
H
L
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
10
11
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
H
H
H
H
12
13
14
15
L
L
L
L
L
L
H
H
L
H
L
H
H
H
H
H
SN54/74LS390 ÷10 (50% @ Q0)
TRUTH TABLE
(Input on CP1, Q3 to CP0)
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
H
L
L
L
L
H
L
H
L
H
L
L
H
L
H
L
L
L
L
L
L
H
H
H
H
H
L
L
H
H
L
L
L
H
H
L
H = HIGH Voltage Level
L = LOW Voltage Level
GUARANTEED OPERATING RANGES
Symbol Parameter Min Typ Max Unit
VCC Supply Voltage 54
74 4.5
4.75 5.0
5.0 5.5
5.25 V
TAOperating Ambient Temperature Range 54
74 –55
025
25 125
70 °C
IOH Output Current — High 54, 74 0.4 mA
IOL Output Current — Low 54
74 4.0
8.0 mA
5-4
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
Sbl
P
Limits
Ui
T C di i
Symbol Parameter Min Typ Max Unit Test Conditions
VIH Input HIGH Voltage 2.0 V Guaranteed Input HIGH Voltage for
All Inputs
VIL
Input LOW Voltage
54 0.7
V
Guaranteed Input LOW Voltage for
V
IL
I
npu
t
LOW
V
o
lt
age 74 0.8
V
pg
All Inputs
VIK Input Clamp Diode Voltage 0.65 1.5 V VCC = MIN, IIN = –18 mA
VOH
Output HIGH Voltage
54 2.5 3.5 V VCC = MIN, IOH = MAX, VIN = VIH
V
OH
O
u
t
pu
t
HIGH
V
o
lt
age 74 2.7 3.5 V
CC ,OH ,IN IH
or VIL per T ruth Table
VOL
Output LOW Voltage
54, 74 0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,
VIN =V
IL or VIH
V
OL
O
u
t
pu
t
LOW
V
o
lt
age 74 0.35 0.5 V IOL = 8.0 mA
V
IN =
V
IL or
V
IH
per T ruth Table
IIH
Input HIGH Current
20 µA VCC = MAX, VIN = 2.7 V
I
IH
I
npu
t
HIGH
C
urren
t
0.1 mA VCC = MAX, VIN = 7.0 V
I
I LOW C
MR 0.4 mA
V MAX V 0 4 V
IIL Input LOW Current CP, CP01.6 mA VCC = MAX, VIN = 0.4 V
CP12.4 mA
IOS Short Circuit Current (Note 1) –20 100 mA VCC = MAX
ICC Power Supply Current 26 mA VCC = MAX
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V)
Sbl
P
Limits
Ui
T C di i
Symbol Parameter Min Typ Max Unit Test Conditions
fMAX Maximum Clock Frequency
CP0 to Q025 35 MHz
C15F
fMAX Maximum Clock Frequency
CP1 to Q120 MHz
C15F
tPLH
tPHL Propagation Delay,
CP to Q0LS393 12
13 20
20 ns
C15F
tPLH
tPHL CP0 to Q0LS390 12
13 20
20 ns
C15F
tPLH
tPHL CP to Q3LS393 40
40 60
60 ns CL = 15 pF
tPLH
tPHL CP0 to Q2LS390 37
39 60
60 ns
Lp
tPLH
tPHL CP1 to Q1LS390 13
14 21
21 ns
tPLH
tPHL CP1 to Q2LS390 24
26 39
39 ns
tPLH
tPHL CP1 to Q3LS390 13
14 21
21 ns
tPHL MR to Any Output LS390/393 24 39 ns
5-5
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
AC SETUP REQUIREMENTS (TA = 25°C, VCC = 5.0 V)
P
Limits
Ui
T C di i
Symbol Parameter Min Typ Max Unit Test Conditions
tWClock Pulse Width LS393 20 ns
V50V
tWCP0 Pulse Width LS390 20 ns
V50V
tWCP1 Pulse Width LS390 40 ns VCC = 5.0 V
tWMR Pulse Width LS390/393 20 ns
trec Recovery Time LS390/393 25 ns
AC WAVEFORMS
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate T ruth Table.
*CP
Q
Q
MR & MS
CP
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V 1.3 V
1.3 V
1.3 V
tPHL
tPHL
tPLH
Figure 1
Figure 2
tW
tWtrec