PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D Document Title 256Kx16 Bit High Speed Static RAM(5.0V Operating). Operated at Commercial and Industrial Temperature Ranges. Revision History Rev No. History Draft Data Remark Rev. 0.0 Initial release with Preliminary. September. 7. 2001 Preliminary Rev. 0.1 Package dimension modify on page 11. Septermber.28. 2001 Preliminary Rev. 0.2 Change Icc, Isb and Isb1 November, 3, 2001 Preliminary November, 23, 2001 Preliminary December, 18, 2001 Preliminary Item ICC(Commercial) ICC(Industrial) 10ns 12ns 15ns 10ns 12ns 15ns ISB ISB1(Normal) Previous 90mA 80mA 70mA 115mA 100mA 85mA 30mA 10mA Current 65mA 55mA 45mA 85mA 75mA 65mA 20mA 5mA Rev. 0.3 1. Correct AC parameters : Read & Write Cycle 2. Corrrect Power part : Delete "P-Industrial,Low Power" part 3. Delete Data Retention Characteristics Rev. 0.4 1. Delete 15ns speed bin. 2. Change Icc for Industrial mode. Item 10ns ICC(Industrial) 12ns Previous 85mA 75mA Current 75mA 65mA Rev. 1.0 1. Final datasheet release. 2. Delete 12ns speed bin. July, 09, 2002 Final Rev. 2.0 1. Add the Lead Free Package type. June. 20, 2003 Final The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters. -1- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D 4Mb Async. Fast SRAM Ordering Information Org. 1M x4 512K x8 256K x16 Part Number VDD(V) Speed ( ns ) 5 10 K6R4004V1D-J(K)C(I) 08/10 3.3 8/10 K6R4008C1D-J(K,T,U)C(I) 10 5 10 K6R4008V1D-J(K,T,U)C(I) 08/10 3.3 8/10 K6R4016C1D-J(K,T,U,E)C(I) 10 5 10 3.3 8/10 K6R4004C1D-J(K)C(I) 10 K6R4016V1D-J(K,T,U,E)C(I,L,P) 08/10 -2- PKG J : 32-SOJ K : 32-SOJ(LF) J : 36-SOJ K : 36-SOJ(LF) T : 44-TSOP2 U : 44-TSOP2(LF) J : 44-SOJ K : 44-SOJ(LF) T : 44-TSOP2 U: 44-TSOP2(LF) E : 48-TBGA Temp. & Power C : Commercial Temperature ,Normal Power Range I : Industrial Temperature ,Normal Power Range L : Commercial Temperature ,Low Power Range P : Industrial Temperature ,Low Power Range Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D 256K x 16 Bit High-Speed CMOS Static RAM FEATURES GENERAL DESCRIPTION * Fast Access Time 10ns(Max.) * Low Power Dissipation Standby (TTL) : 20mA(Max.) (CMOS) : 5mA(Max.) Operating K6R4016C1D-10 : 65mA(Max.) * Single 5.0V10 % Power Supply * TTL Compatible Inputs and Outputs * Fully Static Operation - No Clock or Refresh required * Three State Outputs * Center Power/Ground Pin Configuration * Data Byte Control : LB : I/O1~ I/O8, UB : I/O9~ I/O16 * Standard Pin Configuration K6R4016C1D-J : 44-SOJ-400 K6R4016C1D-K : 44-SOJ-400(Lead-Free) K6R4016C1D-T : 44-TSOP2-400BF K6R4016C1D-U : 44-TSOP2-400BF (Lead-Free) K6R4016C1D-E : 48-TBGA with 0.75 Ball pitch (7mm X 9mm) * Operating in Commercial and Industrial Temperature range. The K6R4016C1D is a 4,194,304-bit high-speed Static Random Access Memory organized as 262,144 words by 16 bits. The K6R4016C1D uses 16 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. Also it allows that lower and upper byte access by data byte control(UB, LB). The device is fabricated using SAMSUNGs advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The K6R4016C1D is packaged in a 400mil 44-pin plastic SOJ or TSOP(II) forward or 48 T BGA. FUNCTIONAL BLOCK DIAGRAM Clk Gen. Pre-Charge Circuit A2 A3 A4 A5 A6 A7 A8 A9 Row Select A0 A1 I/O1 ~I/O 8 Data Cont. I/O9 ~I/O 16 Data Cont. Memory Array 1024 Rows 256 x 16 Columns I/O Circuit & Column Select Gen. CLK A10 A11 A1 2 A13 A 14 A 15 A16 A1 7 WE OE UB LB CS -3- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D PIN CONFIGURATION (Top View) A0 1 4 4 A 17 A1 2 4 3 A 16 A2 3 4 2 A 15 A3 4 4 1 OE A4 5 4 0 UB CS 6 3 9 LB I/O1 7 3 8 I/O 16 I/O2 8 3 7 I/O 15 I/O3 9 3 6 I/O 14 SOJ/ TSOP2 I/O4 10 Vcc 11 1 2 3 4 5 6 A LB OE A0 A1 A2 N.C B I/O1 UB A3 A4 CS I/O9 C I/O2 I/O3 A5 A6 I/O11 I/O10 D Vss I/O4 A17 A7 I/O12 Vcc E Vcc I/O5 N.C A16 I/O13 Vss F I/O7 I/O6 A14 A15 I/O14 I/O15 G I/O8 N.C A12 A13 WE I/O16 H N.C A8 A9 A10 A11 N.C 3 5 I/O 13 3 4 Vss Vss 12 3 3 Vcc I/O5 13 3 2 I/O 12 I/O6 14 3 1 I/O 11 I/O7 15 3 0 I/O 10 I/O8 16 2 9 I/O 9 WE 17 2 8 N.C A5 18 2 7 A 14 A6 19 2 6 A 13 A7 20 2 5 A 12 A8 21 2 4 A 11 A9 22 2 3 A 10 48-TBGA PIN FUNCTION Pin Name A 0 - A17 Pin Function Address Inputs WE Write Enable CS Chip Select OE Output Enable LB Lower-byte Control(I/O 1~I/O 8) UB Upper-byte Control(I/O 9~I/O 16) I/O1 ~ I/O 16 Data Inputs/Outputs V CC Power(+5.0V) V SS Ground N.C No Connection ABSOLUTE MAXIMUM RATINGS* Parameter Voltage on Any Pin Relative to V SS Voltage on V CC Supply Relative to V SS Symbol Rating Unit V IN, V OUT -0.5 to V CC+0.5 V V CC -0.5 to 7.0 V Power Dissipation Storage Temperature Operating Temperature PD 1.0 W TSTG -65 to 150 C Commercial TA 0 to 70 C Industrial TA -40 to 85 C * Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. -4- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D RECOMMENDED DC OPERATING CONDITIONS* (T A=0 to 70C) Symbol Min Typ Max Unit Supply Voltage Parameter V CC 4.5 5.0 5.5 V Ground V SS 0 0 0 V Input High Voltage V IH 2.2 - V CC+0.5*** V Input Low Voltage V IL -0.5** - 0.8 V * The above parameters are also guaranteed at industrial temperature range. ** VIL (Min) = -2.0V a.c(Pulse Width 8ns) for I 20mA. *** VIH (Max) = V C C + 2.0V a.c (Pulse Width 8ns) for I 20mA. DC AND OPERATING CHARACTERISTICS* (TA=0 to 70C, Vcc=5.0V10%, unless otherwise specified) Min Max Unit Input Leakage Current Parameter ILI V IN=VSS to V CC -2 2 A Output Leakage Current ILO CS = VIH or O E=VIH or WE=V IL V OUT=VSS to V CC -2 2 A Operating Current ICC Min. Cycle, 100% Duty CS = VIL, V IN=V I H or V IL, IOUT=0mA mA Standby Current Symbol Test Conditions Com. 10ns - 65 Ind. 10ns - 75 ISB Min. Cycle, CS=V I H - 20 ISB1 f=0MHz, CS V CC-0.2V, V INV CC-0.2V or V IN0.2V - 5 mA Output Low Voltage Level V OL IOL =8mA - 0.4 V Output High Voltage Level V OH IOH=-4mA 2.4 - V * The above parameters are also guaranteed at industrial temperature range. CAPACITANCE*(TA =25C, f=1.0MHz) Item Symbol Test Conditions TYP Max Unit Input/Output Capacitance CI/O V I/O=0V - 8 pF Input Capacitance CIN V IN=0V - 6 pF * Capacitance is sampled and not 100% tested. -5- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D AC CHARACTERISTICS (T A=0 to 70C, V CC=5.0V10%, unless otherwise noted.) TEST CONDITIONS* Parameter Value Input Pulse Levels 0V to 3V Input Rise and Fall Times 3ns Input and Output timing Reference Levels 1.5V Output Loads See below * The above test conditions are also applied at industrial temperature range. Output Loads(B) for tHZ, t LZ, tWHZ, tOW , tOLZ & tOHZ Output Loads(A) +5.0V R L = 50 DOUT 480 VL = 1.5V D OUT 30pF* Z O = 50 255 * Capacitive Load consists of all components of the test environment. 5pF* * Including Scope and Jig Capacitance READ CYCLE* K6R4016C1D-10 Parameter Symbol Min Max Unit Read Cycle Time tRC 10 - ns Address Access Time tAA - 10 ns Chip Select to Output tCO - 10 ns Output Enable to Valid Output tOE - 5 ns Chip Enable to Low-Z Output tLZ 3 - ns Output Enable to Low-Z Output tOLZ 0 - ns Chip Disable to High-Z Output tHZ 0 5 ns Output Disable to High-Z Output tOHZ 0 5 ns Output Hold from Address Change tOH 3 - ns Chip Selection to Power Up Time tPU 0 - ns Chip Selection to Power DownTime tPD - 10 ns * The above parameters are also guaranteed at industrial temperature range. -6- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D WRITE CYCLE* K6R4016C1D-10 Parameter Symbol Min Max Unit Write Cycle Time tWC 10 - ns Chip Select to End of Write tCW 7 - ns Address Set-up Time tAS 0 - ns Address Valid to End of Write tAW 7 - ns Write Pulse Width(O E High) tWP 7 - ns Write Pulse Width(O E Low) tWP1 10 - ns Write Recovery Time tWR 0 - ns Write to Output High-Z tWHZ 0 5 ns Data to Write Time Overlap tDW 5 - ns Data Hold from Write Time tDH 0 - ns End of Write to Output Low-Z tOW 3 - ns * The above parameters are also guaranteed at industrial temperature range. TIMING DIAGRAMS TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled , CS=OE=VIL , WE=VIH , UB, LB =VIL ) tRC Address tAA tOH Data Out Previous Valid Data TIMING WAVEFORM OF READ CYCLE(2) Valid Data (WE=VIH ) tRC Address tAA tCO CS tHZ(3,4,5) tBHZ(3,4,5) tBA UB, LB tBLZ(4,5) tOHZ tOE OE tOLZ Data out High-Z tOH tLZ(4,5) Valid Data -7- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D NOTES (READ CYCLE) 1. WE is high for read cycle. 2. All read cycle timing is referenced from the last valid address to the first transition address. 3. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or VOL levels. 4. At any given temperature and voltage condition, tHZ (Max.) is less than tLZ (Min.) both for a given device and from device to device. 5. Transition is measured 200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. 6. Device is continuously selected with CS=VIL. 7. Address valid prior to coincident with CS transition low. 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. TIMING WAVEFORM OF WRITE CYCLE(1) ( O E Clock) tWC Address tAW tWR(5) OE tCW(3) CS tBW UB, LB tAS(4) tWP(2) WE tDW Data in High-Z tDH High-Z Valid Data tOHZ(6) Data out TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low fixed) tWC Address tAW tWR(5) tCW(3) CS tBW UB, LB tWP1(2) tAS(4) WE tDW Data in High-Z tDH Valid Data tWHZ(6) tOW (10) (9) High-Z Data out -8- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D TIMING WAVEFORM OF WRITE CYCLE(3) (CS=Controlled) tWC Address tAW tWR(5) tCW(3) CS tBW UB, LB tAS(4) tWP(2) WE tDW Data in High-Z High-Z Valid Data tLZ Data out tDH tWHZ(6) High-Z High-Z(8) TIMING WAVEFORM OF WRITE CYCLE(4) ( UB, L B Controlled) tWC Address tAW tCW(3) tWR(5) CS tBW UB, LB tAS(4) tWP(2) WE tDW Data in Valid Data tBLZ Data out tDH High-Z tWHZ(6) High-Z(8) High-Z NOTES(WRITE CYCLE) 1. All write cycle timing is referenced from the last valid address to the first transition address. 2. A write occurs during the overlap of a low CS,WE,LB and UB. A write begins at the latest transition CS going low and WE going low ; A write ends at the earliest transition CS going high or WE going high. tWP is measured from the beginning of write to the end of write. 3. t CW is measured from the later of CS going low to end of write. 4. t AS is measured from the address valid to the beginning of write. 5. t WR is measured from the end of write to the address change. t WR applied in case a write ends as CS or WE going high. 6. If OE , CS and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not . be applied because bus contention can occur. 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state. 9. Dout is the read data of the new address. 10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied. -9- Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D FUNCTIONAL DESCRIPTION CS WE OE LB UB I/O Pin Mode Supply Current I/O1 ~I/O8 I/O9 ~I/O16 H X X* X X Not Select High-Z High-Z ISB , ISB1 L H H X X Output Disable High-Z High-Z ICC L X X H H L H L L H DOUT High-Z ICC H L High-Z D OUT L L X L L L H H L Read DOUT D OUT D IN High-Z L High-Z D IN L D IN D IN Write ICC * X means Don t Care. - 10 Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY K6R4016C1D CMOS SRAM PACKAGE DIMENSIONS Units:millimeters/Inches 44-SOJ-400 #23 9.40 0.25 0.370 0.010 10.1 6 0.40 0 #44 11.18 0.12 0.440 0.005 0.20 +0.10 -0.05 0.008 +0.004 - 0.002 #1 #22 28.98 MAX 1.141 0.69 MIN 0.027 25.58 0.12 1.125 0.005 1.19 ) 0.047 3.76 1.27 MAX ( 0.050 ) 0.148 0.10 MAX 0.004 ( 0.43 0.017 ( 0.95 ) 0.0375 +0.10 -0.05 +0.004 - 0.002 1.27 0.050 0.71 +0.10 -0.05 0.028 +0.004 -0.002 44-TSOP2-400BF Units:millimeters/Inches 0~8 0.25 0.010 TYP #23 #44 11.76 0.20 0.463 0.008 1 0.1 6 0.400 0.45 ~0.75 0.018 ~ 0.030 ( 0.50 ) 0.020 #1 #22 18.81 MAX 0.741 18.41 0.725 0.075 0.125+- 0.035 0.005 +- 0.003 0.001 0.10 0.004 1.00 0.10 0.039 0.004 ( 0.805 ) 0.032 0.30 +0.10 -0.05 0.012 +- 0.004 0.002 0.05 0.002 MIN 0.80 0.0315 - 11 1.20 MAX 0.047 0.10 0.004 MAX Rev 2.0 June 2003 PRELIMPreliminaryPPPPPPPPPINARY CMOS SRAM K6R4016C1D PACKAGE DIMENSIONS Units : millimeter. Top View Bottom View B B A1 INDEX MARK 0.50 B1 6 5 4 3 2 0.50 1 A B #A1 C C C1 C D C1/2 E F G H B/2 Detail A Side View Y 0.55/Typ. E1 E 0.35/Typ. E2 0.30 A D C Min Typ Max A - 0.75 - B 6.90 7.00 7.10 B1 - 3.75 - C 8.90 9.00 9.10 C1 - 5.25 - D 0.40 0.45 0.50 E 0.80 0.90 1.00 E1 - 0.55 - E2 0.30 0.35 0.40 Y - - 0.08 Notes. 1. Bump counts: 48(8row x 6column) 2. Bump pitch : (x,y)=(0.75 x 0.75)(typ.) 3. All tolerence are +/-0.050 unless otherwise specified. 4. Typ : Typical 5. Y is coplanarity: 0.08(Max) - 12 Rev 2.0 June 2003