SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
State-of-the-Art
EPIC-
ΙΙ
B
BiCMOS Design
Significantly Reduces Power Dissipation
D
Latch-Up Performance Exceeds 500 mA Per
JEDEC Standard JESD-17
D
Typical VOLP (Output Ground Bounce) < 1 V
at VCC = 5 V, TA = 25°C
D
High-Drive Outputs (–32-mA IOH, 64-mA IOL)
D
Package Options Include Plastic
Small-Outline (DW), Shrink Small-Outline
(DB), and Thin Shrink Small-Outline (PW)
Packages, Ceramic Chip Carriers (FK),
Ceramic Flat (W) Package, and Plastic (N)
and Ceramic (J) DIPs
description
The eight latches of the ’ABT373 are transparent
D-type latches. While the latch-enable (LE) input
is high, the Q outputs follow the data (D) inputs.
When LE is taken low, the Q outputs are latched
at the logic levels set up at the D inputs.
A buffered output-enable (OE) input can be used
to place the eight outputs in either a normal logic
state (high or low logic levels) or a
high-impedance state. In the high-impedance
state, the outputs neither load nor drive the bus
lines significantly . The high-impedance state and
increased drive provide the capability to drive bus
lines without need for interface or pullup
components.
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
T o ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN54ABT373 is characterized for operation over the full military temperature range of –55°C to 125°C. The
SN74ABT373 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(each latch)
INPUTS OUTPUT
OE LE DQ
L H H H
LHL L
LLX Q
0
H X X Z
Copyright 1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC-ΙΙB is a trademark of Texas Instruments Incorporated.
SN54ABT373 ...J OR W PACKAGE
SN74ABT373 . . . DB, DW, N, OR PW PACKAGE
(TOP VIEW)
SN54ABT373 . . . FK PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
OE
1Q
1D
2D
2Q
3Q
3D
4D
4Q
GND
VCC
8Q
8D
7D
7Q
6Q
6D
5D
5Q
LE
3 2 1 20 19
9 10 11 12 13
4
5
6
7
8
18
17
16
15
14
2D
2Q
3Q
3D
4D
1D
1Q
OE
5Q
5D 8Q
4Q
GND
LE VCC
8D
7D
7Q
6Q
6D
SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic symbol
1D
3
1D 4
2D 7
3D
EN
1
1Q
2
2Q
5
3Q
6
8
4D 13
5D 14
6D
4Q
9
5Q
12
6Q
15
OE
17
7D 18
8D
C1
11
LE
7Q
16
8Q
19
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
OE
To Seven Other Channels
1
11
32
LE
1D
C1
1D 1Q
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (see Note 1) –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high or power-off state, VO –0.5 V to 5.5 V. . . . . . . . . . . . . . . . . . .
Current into any output in the low state, IO: SN54ABT373 96 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN74ABT373 128 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0) –18 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Note 2): DB package 115°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DW package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N package 67°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PW package 128°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages,
which use a trace length of zero.
SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions (see Note 3)
SN54ABT373 SN74ABT373
UNIT
MIN MAX MIN MAX
UNIT
VCC Supply voltage 4.5 5.5 4.5 5.5 V
VIH High-level input voltage 2 2 V
VIL Low-level input voltage 0.8 0.8 V
VIInput voltage 0 VCC 0 VCC V
IOH High-level output current –24 –32 mA
IOL Low-level output current 48 64 mA
t/vInput transition rise or fall rate Outputs enabled 5 5 ns/V
TAOperating free-air temperature –55 125 –40 85 °C
NOTE 3: Unused inputs must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
TA = 25°C SN54ABT373 SN74ABT373
UNIT
PARAMETER
TEST
CONDITIONS
MIN TYPMAX MIN MAX MIN MAX
UNIT
VIK VCC = 4.5 V, II = –18 mA –1.2 –1.2 –1.2 V
VCC = 4.5 V, IOH = –3 mA 2.5 2.5 2.5
VOH
VCC = 5 V, IOH = –3 mA 3 3 3
V
V
OH
VCC =45V
IOH = –24 mA 2 2
V
V
CC =
4
.
5
V
IOH = –32 mA 2* 2
VOL
VCC =45V
IOL = 48 mA 0.55 0.55
V
V
OL
V
CC =
4
.
5
V
IOL = 64 mA 0.55* 0.55
V
Vhys 100 mV
IIVCC = 5.5 V, VI = VCC or GND ±1±1±1µA
IOZH VCC = 5.5 V, VO = 2.7 V 101010µA
IOZL VCC = 5.5 V, VO = 0.5 V –10–10–10µA
Ioff VCC = 0, VI or VO 4.5 V ±100 ±100 µA
ICEX VCC = 5.5 V, VO = 5.5 V Outputs high 50 50 50 µA
IO§VCC = 5.5 V, VO = 2.5 V –50 –100 –180 –50 –180 –50 –180 mA
V55VI0
Outputs high 1 250 250 250 µA
ICC VCC = 5.5 V, IO = 0,
VI=V
CC or GND
Outputs low 24 30 30 30 mA
VI
=
VCC
or
GND
Outputs disabled 0.5 250 250 250 µA
ICCVCC = 5.5 V, One input at 3.4 V,
Other inputs at VCC or GND 1.5 1.5 1.5 mA
CiVI = 2.5 V or 0.5 V 3 pF
CoVO = 2.5 V or 0.5 V 6 pF
* On products compliant to MIL-PRF-38535, this parameter does not apply.
All typical values are at VCC = 5 V.
This data sheet limit may vary among suppliers.
§Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Figure 1)
SN54ABT373
VCC = 5 V,
TA = 25°CMIN MAX UNIT
MIN MAX
twPulse duration, LE high 3.3 3.3 ns
tsu
Setu
p
time data before LE
High 2.2 2.5
ns
t
su
Setup
time
,
data
before
LE
Low 2.2 2.5
ns
thHold time, data after LEHigh or low 2.2 2.5 ns
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Figure 1)
SN74ABT373
VCC = 5 V,
TA = 25°CMIN MAX UNIT
MIN MAX
twPulse duration, LE high 3.3 3.3 ns
t
Setup time data before LE
High 1.9 1.9
ns
t
su
S
e
t
up
ti
me,
d
a
t
a
b
e
f
ore
LE
Low 1.5 1.5
ns
thHold time, data after LEHigh or low 1 1 ns
SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54ABT373
PARAMETER FROM
(INPUT) TO
(OUTPUT) VCC = 5 V,
TA = 25°CMIN MAX UNIT
MIN TYP MAX
tPLH
D
Q
1.9 3.9 5.4 1.3 6.8
ns
tPHL
D
Q
2.2 4.2 5.7 2 7
ns
tPLH
LE
Q
2.2 4.6 6.1 1.8 7.7
ns
tPHL
LE
Q
3.2 5.2 6.7 2.5 7.7
ns
tPZH
OE
Q
1.2 3.2 5.5 1 6.2
ns
tPZL
OE
Q
2 4.7 6.2 1.5 7.2
ns
tPHZ
OE
Q
2.5 4.9 6.4 2.4 8
ns
tPLZ
OE
Q
2 4.5 6 2 7
ns
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN74ABT373
PARAMETER FROM
(INPUT) TO
(OUTPUT) VCC = 5 V,
TA = 25°CMIN MAX UNIT
MIN TYP MAX
tPLH
D
Q
1.9 3.9 5.4 1.9 5.9
ns
tPHL
D
Q
2.2 4.2 5.7 2.2 6.2
ns
tPLH
LE
Q
2.2 4.6 6.1 2.2 6.6
ns
tPHL
LE
Q
3.2 5.2 6.7 3.2 7.2
ns
tPZH
OE
Q
1.2 3.2 4.7 1.2 5.2
ns
tPZL
OE
Q
2.7 4.7 6.2 2.7 6.7
ns
tPHZ
OE
Q
2.5 4.9 6.4 2.5 6.9
ns
tPLZ
OE
Q
2 4.5 6 2 6.5
ns
SN54ABT373, SN74ABT373
OCTAL TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
SCBS155D – JANUARY 1991 – REVISED MAY 1997
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
1.5 V
th
tsu
From Output
Under Test
CL = 50 pF
(see Note A)
LOAD CIRCUIT
S1
7 V
Open
GND
500
500
Data Input
Timing Input 1.5 V 3 V
0 V
1.5 V 1.5 V
3 V
0 V
3 V
0 V
1.5 V
tw
Input
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOLTAGE WAVEFORMS
PULSE DURATION
tPLH
tPHL
tPHL
tPLH
VOH
VOH
VOL
VOL
1.5 V 1.5 V 3 V
0 V
1.5 V1.5 V
Input
1.5 V
Output
Control
Output
W aveform 1
S1 at 7 V
(see Note B)
Output
W aveform 2
S1 at Open
(see Note B)
VOL
VOH
tPZL
tPZH
tPLZ
tPHZ
1.5 V1.5 V
3.5 V
0 V
1.5 V VOL + 0.3 V
1.5 V VOH – 0.3 V
0 V
3 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
Output
Output
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
7 V
Open
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. W aveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
W aveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 n s , t f 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
1.5 V
Figure 1. Load Circuit and Voltage Waveforms
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9321801Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9321801QRA ACTIVE CDIP J 20 1 TBD Call TI Call TI
5962-9321801QSA ACTIVE CFP W 20 1 TBD Call TI Call TI
SN74ABT373DBLE OBSOLETE SSOP DB 20 TBD Call TI Call TI
SN74ABT373DBR ACTIVE SSOP DB 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DBRE4 ACTIVE SSOP DB 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DW ACTIVE SOIC DW 20 25 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DWE4 ACTIVE SOIC DW 20 25 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DWG4 ACTIVE SOIC DW 20 25 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DWR ACTIVE SOIC DW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373DWRG4 ACTIVE SOIC DW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373N ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
SN74ABT373NE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
SN74ABT373NSR ACTIVE SO NS 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373NSRE4 ACTIVE SO NS 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373NSRG4 ACTIVE SO NS 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373PW ACTIVE TSSOP PW 20 70 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
SN74ABT373PWE4 ACTIVE TSSOP PW 20 70 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373PWG4 ACTIVE TSSOP PW 20 70 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373PWLE OBSOLETE TSSOP PW 20 TBD Call TI Call TI
SN74ABT373PWR ACTIVE TSSOP PW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373PWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74ABT373PWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SNJ54ABT373FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
SNJ54ABT373J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type
SNJ54ABT373W ACTIVE CFP W 20 1 TBD Call TI N / A for Pkg Type
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 3
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54ABT373, SN74ABT373 :
Catalog: SN74ABT373
Military: SN54ABT373
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
SN74ABT373DBR SSOP DB 20 2000 330.0 16.4 8.2 7.5 2.5 12.0 16.0 Q1
SN74ABT373DWR SOIC DW 20 2000 330.0 24.4 10.8 13.0 2.7 12.0 24.0 Q1
SN74ABT373NSR SO NS 20 2000 330.0 24.4 8.2 13.0 2.5 12.0 24.0 Q1
SN74ABT373PWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
SN74ABT373DBR SSOP DB 20 2000 367.0 367.0 38.0
SN74ABT373DWR SOIC DW 20 2000 367.0 367.0 45.0
SN74ABT373NSR SO NS 20 2000 367.0 367.0 45.0
SN74ABT373PWR TSSOP PW 20 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE
4040065 /E 12/01
28 PINS SHOWN
Gage Plane
8,20
7,40
0,55
0,95
0,25
38
12,90
12,30
28
10,50
24
8,50
Seating Plane
9,907,90
30
10,50
9,90
0,38
5,60
5,00
15
0,22
14
A
28
1
2016
6,50
6,50
14
0,05 MIN
5,905,90
DIM
A MAX
A MIN
PINS **
2,00 MAX
6,90
7,50
0,65 M
0,15
0°ā8°
0,10
0,09
0,25
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated