APT60GA60JD60 600V High Speed PT IGBT E E POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved 7 22 C G through leading technology silicon design and lifetime control processes. A reduced Eoff TO S VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short "UL Recognized" IS OT OP (R) delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT60GA60JD60 poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) (R) file # E145592 FEATURES TYPICAL APPLICATIONS * Fast switching with low EMI * ZVS phase shifted and other full bridge * Very Low Eoff for maximum efficiency * Half bridge * Ultra low Cres for improved noise immunity * High power PFC boost * Low conduction loss * Welding * Low gate charge * UPS, solar, and other inverters * Increased intrinsic gate resistance for low EMI * High frequency, high efficiency industrial * RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25C 112 IC2 Continuous Collector Current @ TC = 100C 60 ICM Pulsed Collector Current 1 178 VGE Gate-Emitter Voltage 30 V PD Total Power Dissipation @ TC = 25C 356 W Vces Parameter 2 SSOA Switching Safe Operating Area @ TJ = 150C TJ, TSTG Operating and Storage Junction Temperature Range Static Characteristics Symbol A 178A @ 600V C -55 to 150 TJ = 25C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 600 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25C 2.0 IC = 62A TJ = 125C 1.9 VGE =VCE , IC = 2.5mA ICES Typ 3 4.5 TJ = 25C 275 VGE = 0V TJ = 125C 3000 Microsemi Website - http://www.microsemi.com V 6 VCE = 600V, VGS = 30V Unit 100 A nA 052-6340 Rev D 6 - 2011 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg3 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf APT60GA60JD60 TJ = 25C unless otherwise specified Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time Test Conditions Min Typ Capacitance 8010 VGE = 0V, VCE = 25V 714 f = 1MHz 74 Gate Charge 296 VGE = 15V 106 VCE= 300V IC = 62A TJ = 150C, RG = 4.74, VGE = 15V, Inductive Switching (25C) 35 VCC = 400V 49 Turn-Off Delay Time VGE = 15V 175 IC = 62A 91 RG = 4.74 1450 Eoff6 Turn-Off Switching Energy TJ = +25C 1255 td(on) Turn-On Delay Time Inductive Switching (125C) 33 Current Rise Time VCC = 400V 49 Turn-Off Delay Time VGE = 15V 214 IC = 62A 119 Eon2 Turn-On Switching Energy RG = 4.74 1995 Eoff6 Turn-Off Switching Energy TJ = +125C 1760 tf Current Fall Time nC A Turn-On Switching Energy tr pF 178 L= 100uH, VCE = 600V Eon2 td(off) Unit 60 Current Rise Time Current Fall Time Max ns J ns J Thermal and Mechanical Characteristics Symbol Characteristic RJC Junction to Case Thermal Resistance (IGBT) RJC Junction to Case Thermal Resistance (Diode) WT Package Weight VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) Min Typ Max - - .35 .60 2500 29.2 - Unit C/W g Volts 052-6340 Rev D 6 - 2011 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380s, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves 350 V GE TJ= 55C 150 TJ= 25C 100 75 50 25 150 125 100 75 50 TJ= 25C 25 TJ= 125C TJ= -55C 0 4 6 8 10 12 13 14 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25C. 250s PULSE TEST <0.5 % DUTY CYCLE 3 IC = 124A IC = 62A 2 IC = 31A 1 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 6V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25C) I = 62A C T = 25C 14 J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 50 5 100 150 200 250 300 GATE CHARGE (nC) FIGURE 4, Gate charge 350 4 IC = 124A 3 IC = 62A 2 IC = 31A 1 VGE = 15V. 250s PULSE TEST <0.5 % DUTY CYCLE 0 0 25 50 75 100 125 150 TJ, Junction Temperature (C) FIGURE 6, On State Voltage vs Junction Temperature 1.15 125 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 75 50 25 0 25 50 75 100 125 150 TC, Case Temperature (C) FIGURE 8, DC Collector Current vs Case Temperature 052-6340 Rev D 6 - 2011 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 7V 50 2 6 8V 100 0 0 4 0 150 16 250s PULSE TEST<0.5 % DUTY CYCLE 175 0 9V 200 0 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25C) 200 10V 250 VGE, GATE-TO-EMITTER VOLTAGE (V) 0 IC, COLLECTOR CURRENT (A) TJ= 150C TJ= 125C 125 11V 300 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 175 13V 15V = 15V IC, COLLECTOR CURRENT (A) 200 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) APT60GA60JD60 Typical Performance Curves APT60GA60JD60 300 45 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 VGE = 15V 40 35 30 25 20 15 VCE = 400V TJ = 25C, or 125C RG = 4.7 L = 100H 10 5 250 200 150 VGE =15V,TJ=25C 100 0 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 150 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 200 RG = 4.7, L = 100H, VCE = 400V TJ = 125C, VGE = 15V 100 75 50 TJ = 25 or 125C,VGE = 15V 25 5000 TJ = 125C 4000 3000 2000 TJ = 25C 1000 0 J Eoff124A 8000 Eon2,124A 6000 Eoff,62A Eon2,62A Eoff,31A 2000 Eon2,31A 0 0 TJ = 125C 3000 2000 1000 TJ = 25C 7500 V = 400V CE V = +15V GE T = 125C 4000 G 4000 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (J) 10000 V = 400V CE V = +15V GE R = 4.7 0 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 12000 TJ = 25C, VGE = 15V 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 5000 EOFF, TURN OFF ENERGY LOSS (J) Eon2, TURN ON ENERGY LOSS (J) G 80 0 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 7000 V = 400V CE V = +15V GE R = 4.7 120 40 0 6000 RG = 4.7, L = 100H, VCE = 400V 160 tr, FALL TIME (ns) tr, RISE TIME (ns) 125 SWITCHING ENERGY LOSSES (J) VCE = 400V RG = 4.7 L = 100H 50 0 052-6340 Rev D 6 - 2011 VGE =15V,TJ=125C V = 400V CE V = +15V GE R = 4.7 G Eon2,124A 6000 Eoff,124A 4500 3000 Eon2,62A Eoff,62A 1500 Eon2,31A Eoff,31A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT60GA60JD60 10000 C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres IC, COLLECTOR CURRENT (A) 500 100 10 1 10 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.35 D = 0.9 0.30 0.25 0.7 0.20 0.5 Note: 0.15 P DM 0.3 0.10 t1 t2 t 0.1 0.05 0.05 SINGLE PULSE 0 10-5 10 -3 10 -2 10 -1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 -4 Duty Factor D = 1 /t2 Peak T J = P DM x Z JC + T C 10 052-6340 Rev D 6 - 2011 ZJC, THERMAL IMPEDANCE (C/W) 0.40 APT60GA60JD60 Gate Voltage 10% TJ = 125C td(on) APT30DQ60 90% tr IC V CC V CE 5% Collector Current 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125C 90% td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6340 Rev D 6 - 2011 Figure 22, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT60GA60JD60 Maximum Average Forward Current (TC = 92C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 79 Non-Repetitive Forward Surge Current (TJ = 45C, 8.3 ms) 600 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions VF Min Forward Voltage Type IF = 60A 1.7 IF = 120A 2.0 IF = 60A, TJ = 125C 1.4 Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Min Typ Max IF = 1A, diF/dt = -100A/s, VR = 30V, TJ = 25C - 160 - - 70 - - 100 - nC - 4 - Amps - 140 - ns - 690 - nC - 9 - Amps - 80 - ns - 1540 - nC - 31 - Amps IF = 60A, diF/dt = -200A/s Maximum Reverse Recovery Current trr Test Conditions VR = 400V, TC = 25C IF = 60A, diF/dt = -200A/s Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current VR = 400V, TC = 125C IF = 60A, diF/dt = -1000A/s VR = 400V, TC = 125C Unit ns 0.60 D = 0.9 0.50 0.7 0.40 0.5 0.30 Note: 0.3 0 t2 0.1 0.05 0.10 10-5 t1 t SINGLE PULSE Duty Factor D = 1 /t2 Peak T J = P DM x Z JC + T C 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 23. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 052-6340 Rev D 6 - 2011 0.20 P DM ZJC, THERMAL IMPEDANCE (C/W) 0.70 Dynamic Characteristics TJ = 25C unless otherwise specified 200 140 120 TJ = 175C 100 80 TJ = 125C 60 40 TJ = 25C 20 TJ = -55C 0.5 1 1.5 2 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 24. Forward Current vs. Forward Voltage 0 2000 Qrr, REVERSE RECOVERY CHARGE (nC) trr, REVERSE RECOVERY TIME (ns) 160 T = 125C J V = 400V 1800 R 120A 1600 1400 1200 60A 1000 800 30A 600 400 200 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 26. Reverse Recovery Charge vs. Current Rate of Change 50 30 T = 125C J V = 400V 120A R 25 20 15 60A 10 30A 5 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 27. Reverse Recovery Current vs. Current Rate of Change Duty cycle = 0.5 T = 175C J 100 0.8 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/s) 100 80 IRRM trr 0.6 60 40 0.4 Qrr 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) Figure 28. Dynamic Parameters vs. Junction Temperature 0 350 CJ, JUNCTION CAPACITANCE (pF) 30A trr 0.2 052-6340 Rev D 6 - 2011 60A 150 0 Qrr 1.0 300 250 200 150 100 50 0 200 120 1.2 R 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/s) Figure 25. Reverse Recovery Time vs. Current Rate of Change 1.4 0.0 120A 250 T = 125C J V = 400V 0 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 180 0 APT60GA60JD60 300 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 30. Junction Capacitance vs. Reverse Voltage 20 0 25 50 75 100 125 150 175 Case Temperature (C) Figure 29. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25C unless otherwise specified APT60GA60JD60 Vr diF /dt Adjus t +18V APT60GT60BR 0V D.U.T. 30H trr/Q rr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 31. Diode Test Circuit 1 IF - Forward Conduction Current 1 2 diF/dt - Rate of Diode Current Change Through Zero Crossing. 4 Zer o 3 IRRM - Maximum Reverse Recovery Current 4 trr - Reverse Recovery Time measured from zero crossing where 5 0.25 I RR M 3 diode current goes from positive to negative, to the point at 2 which the straight line through IRRM and 0.25, IRRM passes through zero. 5 Qrr - Area Under the Curve Defined by IRRM and tRR. Figure 32. Diode Reverse Recovery Waveform Definition SOT-227 (ISOTOP(R)) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M 4 (4 places ) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 0.75 (.030) 0.85 (.033) 12.6 (.496) 12.8 (.504) 25.2 (0.992) 25.4 (1.000) 1.95 (.077) 2.14 (.084) * Emitter/Anode Collector/Cathode 30.1 (1.185) 30.3 (1.193) * Emitter/Anode terminals ar e shorted internally. Current handling capability is equal for either Emitter/Anode terminal . 38.0 (1.496) 38.2 (1.504) Gate * Emitter/Anode Dimensions in Millimeters and (Inches ) 052-6340 Rev D 6 - 2011 7.8 (.307) 8.2 (.322)