R1224N SERIES
PWM/VFM step-down DC/DC Converter
NO.EA-096-061102
OUTLINE
The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current.
Each of these ICs consist s of an oscillator, a PWM control circuit, a reference volt age unit, an e rror amplifier, a
phase compensatio n circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable
circuit, resistors for output volt age detect, and input voltage detect circuit. A low ripple, high efficiency step-down
DC/DC conve rter can be ea sily compose d of this IC with onl y several external compone nts, o r a power-transistor,
an inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjust able
types are without PWM/VFM alternative circuit).
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching
into the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several
types of the R1224Nxxx, which are without a PWM/VFM alternative circuit, are also available.
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The
protection circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat
this operation until maximum duty cycl e condition is released. When the ca use of large load current or som ething
else is removed, the operation is automatically released and returns to normal operation.
Further, built-in UVLO function works when the input voltage is equal or less than UVLO threshold, it makes
this IC be sta ndby and suppresses the consumption current and av oid an unstab le operation.
FEATURES
Supply Current................................................................Typ. 20µA (R1224Nxx2E/F/M/L, R1224N102M)
Ty p. 30µA (R1224Nxx2G, R12 24N102G)
Ty p. 40µA (R1224Nxx2H, R1224N102H)
Standby Current..............................................................Typ. 0µA
Input Voltage Range .......................................................2.3V~18.5V
Output Voltage Range.....................................................1.2V to 6.0V (R1224Nxx2x)
1.0V to VIN (R1224N102x)
Output Voltage Accuracy.................................................±2.0%
Oscillator Frequency.......................................................Typ. 180kHz (R1224Nxx2M, R1224N102M)
Typ. 300kHz (R1224Nxx2E/G, R1224N102G)
Typ. 500kHz (R1224Nxx2F/H, R1224N102H)
Efficiency.........................................................................Typ. 90%
Low Temperature-Drift Coefficient of Output Voltage......Typ. ±100ppm/°C
Package.......................................................................... SOT-23-5
Built-in Soft-start Function............................................... Typ. 10ms
Built-in Current Limit Circuit
APPLICATIONS
Power source for hand-held communication equipment, cameras, video instruments such as VCRs,
camcorders.
Power source for battery-powered equipment.
Power source for household electrical appliances.
1
R1224N
BLOCK DIAGRAM
*Fixed Output Voltage Type
OSC
Amp Vref
Vref
VOUT
CE
VIN
EXT
GND
PWM/VFM
CONTROL Soft Start
Protection Chip Enable
UVLO
5
4
2
1
3
*Adjustable Output Voltage Type
OSC
Amp Vref
Vref
VFB
CE
VIN
EXT
GND
Soft Start
Protection Chip Enable
UVLO
5
4
2
1
3
2
R1224N
SELECTION GUIDE
In the R1224N Series, the output voltage, the oscill ator frequency, the optional function, and the taping typ e for
the ICs can be selected at the user' s req uest.
The selection can be made with designating the part number as sho wn below;
R1224Nxx2x-xx-x Part Number
a b c d e f
Code Contents
a Designation of Packa ge Type;
N: SOT-23-5
b Setting Output Voltage (VOUT):
Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible.
Adjustable type; a=10 means Reference Voltage=1.0V Optional Function is G/H/M.
c 2: fixed
d
Designation of Optional Function
E : 300kHz, with a PWM/VFM alternative circuit
F : 500kHz, with a PWM/VFM alternative circuit
G : 300kHz, without a PWM/VFM alternative circuit
H : 500kHz, without a PWM/VFM alternative circuit
L : 180kHz, with a PWM/VFM alternative circuit
M :180kHz, without a PWM/VFM alternative circuit
e Designation of Taping Type;
(Refer to Taping Specification)"T R" is prescribed as a standard.
f Designation of Composition of pin plating
-F: Lead free plating
3
R1224N
PIN CONFIGURATIO
SOT-23-5
123
4
5
(mark side)
PIN DESCRIPTION
Pin No Symbol Pin Description
1 CE Chip Enable Pin (“H” Active)
2 GND Ground Pin
3 VOUT (VFB) Pin for Monitoring Output Voltage (Feedback Voltage)
4 EXT External Transistor Drive Pin (CMOS Output)
5 VIN Power Supply Pin
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN VIN Supply Voltage 20 V
VEXT EXT Pin Output Voltage 0.3 to VIN+0.3 V
VCE CE Pin Input Voltage 0.3 to VIN+0.3 V
VOUT VOUT/VFB Pin Input Voltage 0.3 to VIN+0.3 V
IEXT EXT Pin Inductor Drive Output Current ± 50 A
PD Power Dissipation (SOT-23-5)* 420 mW
Topt Operating Temperature Range 40 to +85 °C
Tstg Storage Temperature Range 55 to +125 °C
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
4
R1224N
ELECTRICAL CHARACTERISTICS
R1224Nxx2X (X=E/F/G/H/L/M) except R1224N102X Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.3 18.5 V
VOUT Step-down Output Voltage VIN=VCE=VSET+1.5V, IOUT=−100mA
When VSET
<
=
1.5V, VIN=VCE=3.0V VSET
×0.98 VSET VSET
×1.02 V
VOUT/
Topt Step-down Output Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±100 ppm/°C
fosc Oscillator Frequency
VIN=VCE=VSET+1.5V, IOUT=−100mA
When VSET
<
=
1.5, VIN=VCE=3.0V
L/M Version
E/G Version
F/H Version
144
240
400
180
300
500
216
360
600
kHz
fosc/
Topt Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±0.2 %/°C
IDD1 Supply Current 1 VIN=VCE=VOUT=18.5V
E/F/L/M Version
G version
H version
20
30
40
50
60
80
µA
Istandby Standby Current VIN=18.5V, VCE=0V, VOUT=0V 0.0 0.5
µA
IEXTH EXT “H” Output Current VIN=8V, VEXT=7.9V, VOUT=8V,
VCE=8V 17 10 mA
IEXTL EXT “L” Output Current VIN=8V, VEXT=0.1V, VOUT=0V,
VCE=8V 20 30 mA
ICEH CE “H” Input Current VIN=VCE=VOUT=18.5V 0.0 0.5
µA
ICEL CE “L” Input Current VIN=VOUT=18.5V, VCE=0V 0.5 0.0 µA
VCEH CE “H” Input Voltage VIN=8V, VOUT=0V 1.5 V
VCEL CE “L” In put Voltage VIN=8V, VOUT=0V 0.3 V
Maxdty Oscillator Maximum
Duty Cycle 100 %
VFMdty VFM Duty Cycle E/F/L Version 35 %
VUVLO1 UVLO Voltage VIN=VCE=2.5V to 1.5V, VOUT=0V 1.8 2.0 2.2 V
VUVLO2 UVLO Release Voltage VIN=VCE=1.5V to 2.5V, VOUT=0V VUVLO1
+0.1 2.3 V
tstart Delay Time by Soft-Start function VIN=VSET+1.5V, IOUT=−10mA
VCE=0VVSET+1.5V 5 10 20 ms
tprot Delay Time for protection circuit VIN=VCE=VSET+1.5V
VOUT=VSET+1.5V0V 5 15 30 ms
5
R1224N
R1224N102X (X=G/H/M) Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.3 18.5 V
VFB Feedback Voltage VIN=VCE=3.5V, IFB=−100mA 0.98 1.00 1.02 V
VFB/
Topt Feedback Voltage
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±100 ppm/°C
fosc Oscillator Frequency VIN=VCE=3.5V, IFB=−100mA
M Version
G Version
H Version
144
240
400
180
300
500
216
360
600
kHz
fosc/
Topt Oscillator Frequency
Temperature Coefficient 40°C
<
=
Topt
<
=
85°C ±0.2 %/°C
IDD1 Supply Current 1 VIN=VCE=VFB=18.5V
M Version
G Version
H Version
20
30
40
50
60
80
µA
Istandby Standby Current VIN=18.5V, VCE=0V, VFB=0V 0.0 0.5
µA
IEXTH EXT “H” Output Current VIN=8V, VEXT=7.9V, VFB=8V,
VCE=8V 17 10 mA
IEXTL EXT “L” Output Current VIN=8V, VEXT=0.1V, VFB=0V,
VCE=8V 20 30 mA
ICEH CE “H” Input Current VIN=VCE=VFB=18.5V 0.0 0.5
µA
ICEL CE “L” Input Current VIN=VFB=18.5V, VCE=0V 0.5 0.0 µA
VCEH CE “H” Input Voltage VIN=8V, VFB=0V 1.5 V
VCEL CE “L” Input Voltage VIN=8V, VFB=0V 0.3 V
Maxdty Oscillator Maximum Duty Cycle 100 %
VUVLO1 UVLO Voltage VIN=VCE=2.5V to 1.5V, VFB=0V 1.8 2.0 2.2 V
VUVLO2 UVLO Release Voltage VIN=VCE=1.5V to 2.5V, VFB=0V VUVLO1
+0.1 2.3 V
tstart Delay Time by Soft-Start function VIN=2.5V, IFB=−10mA
VCE=0V2.5V 5 10 20 ms
tprot Delay Time for protection circuit VIN=VCE=2.5V
VFB=2.5V0V 5 15 30 ms
6
R1224N
TYPICAL APPLICATION AND APPLICATION HINTS
(1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M except xx=10)
CE CONTROL
R1224N
EXT
GND
VOUT
VIN
CE C3
L
LOAD
C1
R1
C2
PMOS
SD
5
1 2
3
4
PMOS: HAT1044M (Hitachi) L : CR105-270MC (Sumida, 27µH)
SD1 : RB063L-30 (Rohm) C3 : 47µF (Tantalum Type)
C1 : 10µF (Ceramic Type) C2 : 0.1µF (Ceramic Type)
R1 : 10
(2) Adjustable Output Type (R1224N102G/H/M) Example: Output Voltage=3.2V
CE CONTROL
C3
L
LOAD
C1
R1
C2
PMOS
SD
C4
R3
R4
R2
R1224N
EXT
GND
VFB
VIN
CE
5
1 2
3
4
PMOS: HAT1044M (Hitachi) L : CR105-270MC (Sumida, 27µH)
SD1 : RB063L-30 (Rohm) C3 : 47µF (Tantalum Type)
C1 : 10µF (Ceramic Type) C2 : 0.1µF (Ceramic Type) C4: 1000pF (Ceramic Type)
R1 : 10, R2=22k, R3=2.7k, R4=33k
7
R1224N
When you use these ICs, consider the following is sues;
As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do
not make its “H” level mo re than the voltage level of VIN pin.
Set external components as close as possible to the IC and minimize the connection between the components
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make
sufficient ground and reinforce supplying. A large switching current could flow through the connection of power
supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the
voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation
of the IC.
Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical
characteristics. Once after stopping the output voltage, output will restart with soft-start operation. If the
difference between input volt age and output voltage is sm all, the protection circuit may work.
Use capacitors with a capacity of 22µF or more for VOUT pin, and with good high frequency characteristics such
as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is
generated by an inductor when an external transistor is on and off.
Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the
absolute maximum rating at the maximum loading.
Use an inductor with appro priate inductance.
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.
Do not use this IC under t he condition with VIN voltage at equal or less than minimum operating voltage.
When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is
small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this
case, the devise is reset with UVLO function that is different from the reset-protection function caused by
maximum duty cycle.
With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1224N alters
from PWM mode to VFM mode (Pulse ski p mode). The purpose of this circuit is raising the efficiency with a light
load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage
against input voltage is 35% or less, (ex. VIN>8.6V and VOUT=3.0V) even if the large current may be loaded, the
IC keeps its VFM mode. As a result, frequency might be decrea sed , and o scillation waveform might be u nstable.
These phenomena are the typical cha ra cteristics of the IC with PWM/VFM alternative circuit.
ÌThe performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as volta ge, current, and power of each component, PCB p atterns and the IC do not exceed their
respected rated values.
8
R1224N
How to Adjust Output Voltage and about Phase Compensation
As for Adjust able Output type, feedback pin (VFB) voltage is controlled to maint ain 1.0V.
Output Voltage, VOUT is as followin g equ ation:
V
OUT: R2+R4=VFB: R2
V
OUT=VFB×(R2+R4)/R2
Thus, with changing the value of R2 and R4, output voltage can be set in the specified range.
In the DC/DC converter, with the load current and external compon ents such as L and C, phase might be behind
180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this,
phase margin should be secured with proceeding the phase. A pole is formed with external components L and
C3.
C3L1/2 ~ Fpole ×π
A zero (signal back to zero) is formed with R4 and C4.
Fzero~1/(2π×R4×C4)
For example, if L=27µH, C3=47µF, the cut off frequency of the pole is approximately 4.5kHz.
To make the cut off frequency of the pol e as much as 4.5kHz, set R4=33k and C4=1000pF.
If VOUT is set at 2.5V, R2=22k is appropriate.
R3 prevents feedb ack of the noise to VFB pin, about 2.7k is appro priate value.
CE CONTROL
C3
L
LOAD
C1
R1
C2
PMOS
SD
C4
R3
R4
R2
R1224N
EXT
GND
VFB
VIN
CE
5
1 2
3
4
9
R1224N
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter ch arg e s energy in the inductor when Lx transist or is ON, and discharg es the
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits> <Current through L>
IOUT
Lx Tr L
SD
VIN
i1
VOUT
CL
i2
GND
T
=
1/fosc
ton toff
topen
ILmin
ILmax
IL
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases
from ILmin. (=0) to reach ILmax. in proportion to the on-time period (ton) of Lx Tr.
Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, a nd current IL
(=i2) flows.
Step 3: IL decre ases gradually and reaches ILmin. af ter a time peri od of topen, and SD turns of f, provid ed that in
the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this
case, IL value is from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with
the oscillator frequency (fosc) being maintained constant.
Discontinuous Conduction Mode and Continuous Conduction Mode
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the
same as those when Lx Tr. is ON and when it is OFF.
The difference between ILmax and ILmin, which is repre sente d by I;
I=ILmax-ILmin=VOUT×topen/L=(VIN-VOUT)×ton/L ................................... Equation 1
wherein, T=1/fosc=ton+tof f
duty (%)=ton/T×100=ton×fosc×100
topen
<
=
toff
In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L are respectively shown the change of the current at ON, and
the change of the current at OFF.
When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time
period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.
10
R1224N
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,
tonc=T×VOUT/VIN.....................................................................................Equation 2
When ton<tonc, the mode is the discontinuou s mode, and when ton=tonc, the mode is the continuous mode.
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is ON:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of Lx Tr. is described as Rp the direct
current of the inductor is described a s RL.)
VIN=VOUT+(Rp+RL)×IOUT+L×IRP/ton .................................................Equation 3
When Lx Tr. is OFF:
L×IRP/toff=VF+VOUT+RL×IOUT ............................................................ Equation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,
DON=(VOUT+VF+RL×IOUT)/(VIN+VFRp×IOUT)......................................Equation 5
Ripple Current is as follows;
IRP=(VINVOUTRp×IOUTRL×IOUT)×DON/f/L........................................Equation 6
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;
ILmax=IOUT+IRP/2 ............................................................................ Equation 7
Consider ILmax, condition of input and output and select external components.
Ì The above explanation is directed to the calculation in an ideal case in continuous mode.
11
R1224N
External Components
1. Inductor
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,
magnetic saturation occurs and make transform efficiency worse.
When the load current is definite, the smaller value of L, the larger the ripple current.
Provided that the allowable current is large in that case and DC current is small, therefore, for large output
current, efficiency is better than using an inductor with a large value of L and vice versa.
2. Diode
Use a diode with low VF (Schottky type is recommended.) and high switching speed.
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.
3. Capacitors
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for
stable operation.
COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is
recommended.
4. Lx Transistor
Pch Power MOSFET is required for this IC.
Its breakdown voltage between gate and source should be a few V higher than Input Voltage.
In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold
voltage is effective.
If a large load current is necessary for your application and important, choose a MOSFET with low ON
resista nce for good efficiency.
If a small load current is mainly necessary for your application, cho ose a MOSFET with lo w gate cap acity for
good efficiency.
Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.
12
R1224N
TIMING CHART
VOUT Set Output V ol tage
UVLO Voltage
Input Voltage
Rising Time UVLO Reset
VOUT Set Output V ol tage
Protection Circuit Dela y Time
VOUT Set Outpu
t
Voltage
VIN
CE
EXT
VOUT
VOUT Set Outpu
t
Voltage Stable
Operation Stable
Operation Stable
Operation
Soft Start Soft Start Soft Start Soft Start
Reset Protection
The timing chart shown above describes the changing process of input voltage rising, stable operating,
operating with large current, stable operating, input voltage falling, input voltage recovering, and stable
operating.
First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of
pre-standby.
Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start
operation finishes, the operation beco mes stable.
If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during
the delay time of protection circuit. (The current value depends on the circuit.)
After the delay time passes, reset protection works, or EXT signal will be “H”, then output will turn off, then
soft-start operation starts. After the soft-start operation, EXT signal will be “L”, but if the large current is still
flowing, after the delay tim e of protection circuit passes, reset protection circuit will work agai n, the operation will
be continuously repeated unless the cause of large current flowin g is not removed.
Once the cause of the large current flowing is rem oved, within the delay time, the operation will be back to the
stable one.
If the timing for release the large current is in the protection process, the operation will be back to the normal
one after the soft-start operation.
If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection
circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be “H”.
Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function.
After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of
spre-standby.
13
Then after VIN becomes beyond the UVLO threshold, soft-start operation starts , when the soft-start operation
finishes, the operation becomes stable.
R1224N
TEST CIRCUITS
Output Voltage, Oscillator Frequency, CE “H” Input Voltage, CE “L” Input Voltage, Soft-start time
R1224N
EXT
GND
VOUT
VIN
CE
D1
C1
PMOS
V
Oscilloscope
C2
(VFB)
2
31
5
4
L1
Supply Current 1 Standby Current
A
R1224N
GND
VOUT
VIN
CE
(VFB)
2
3 1
5
A
R1224N
GND
VOUT
VIN
CE
(VFB)
2
31
5
EXT “H” Output Cu rrent EXT “L” Output Current
A R1224N
GND
VOUT
VIN
CE
(VFB)
EXT
2
3 1
5 4
AR1224N
GND
VOUT
VIN
CE
(VFB)
EXT
2
31
5 4
CE “H” Input Current, CE “L” Input Current Output Delay T i me for Protection Circ uit
A
R1224N
GND
VOUT
VIN
CE
(VFB)
2
3 1
5
R1224N
GND
VOUT
VIN
CE
(VFB)
EXT
Oscilloscope
C2
2
31
5 4
PMOS : HAT1044M (Hitachi) L : CD104-270MC (Sumida, 27µH)
SD1 : RB491D (Rohm)
C1 : 47µF (Tantalum Type) C2 : 47µF (Tantalum Type)
14
R1224N
TYPICAL CHARACTERISTICS
1)Output Voltage vs. Output Current (*Note)
R1224N182E L=10µH R1224N182F L=10µH
V
IN
5V
V
IN
3.3V
V
IN
5V
V
IN
3.3V
Output Current I
OUT
(mA)
0.1 1 10 100001000100
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
1.850
1.770
1.790
1.810
1.830
1.750
Output Voltage V
OUT
(V)
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
R1224N182G L=10µH R1224N182H L=10µH
V
IN
12V
V
IN
5V
V
IN
3.3V
V
IN
12V
V
IN
5V
V
IN
3.3V
R1224N182L L=27µH R1224N182M L=27µH
V
IN
5V
V
IN
3.3V
V
IN
12V
V
IN
5V
V
IN
3.3V
15
R1224N
R1224N332E L=10µH R1224N332F L=10µH
V
IN
7V
V
IN
4.8V
V
IN
7V
V
IN
4.8V
3.34
3.40
3.30
3.28
3.24
3.20
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.38
3.36
3.32
3.26
3.22
Output Current l
OUT
(mA)
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
3.32
3.35
3.30
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.34
3.33
3.31
3.32
3.35
3.30
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.34
3.33
3.31
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
R1224N332G L=10µH R1224N332G (VIN=10V)
V
IN
15V
V
IN
12V
V
IN
4.8V
R1224N332G (VIN=16V) R1224N332H L=10µH
V
IN
15V
V
IN
12V
V
IN
4.8V
16
R1224N
R1224N332L L=27µH R1224N332M L=27µH
V
IN
7V
V
IN
4.8V
V
IN
15V
V
IN
12V
V
IN
4.8V
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
3.32
3.35
3.30
Output Voltage V
OUT
(V)
3.34
3.33
3.31
Output Current l
OUT
(A)
012345
3.32
3.35
3.30
Output Voltage V
OUT
(V)
3.34
3.33
3.31
Output Current l
OUT
(A)
012345
3.32
3.35
3.30
Output Voltage V
OUT
(V)
3.34
3.33
3.31
Output Current l
OUT
(A)
01234
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
R1224N332M (VIN=5V) R1224N332M (VIN=10V)
R1224N332M (VIN=18V) R1224N502E L=10µH
V
IN
10V
V
IN
6.5V
17
R1224N
R1224N502F L=10µH R1224N502G L=10µH
V
IN
10V
V
IN
6.5V
V
IN
15V
V
IN
12V
V
IN
6.5V
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
5.02
5.05
5.000.1 1 10 100 1000 10000
5.04
5.03
5.01
Output Voltage V
OUT
(V)
Output Current l
OUT
(mA)
5.02
5.05
5.00
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
5.04
5.03
5.01
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
R1224N502G (VIN=10V) R1224N502G (VIN=16V)
R1224N502H L=10µH R1224N502L L=27µH
V
IN
15V
V
IN
12V
V
IN
6.5V
V
IN
10V
V
IN
6.5V
18
R1224N
R1224N502M L=27µH
V
IN
15V
V
IN
12V
V
IN
6.5V
*Note: Typical characteristics 1) are obtained with using
the following components;
PMOS : IRF7406 (IR)
L : CDRH127-100MC (Sumida: 10µH)
SD : RB083L-20 (Rohm)
C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)×2
C2 : 0.1µF (Ceramic Type)
C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)
R1 : 10
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20 30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
2) Efficiency vs. Output Current (*Note)
R1224N182F (VIN=3.3V) CDRH127-10µH R1224N182F (VIN=5.0V) CDRH127-10µH
R1224N182G (VIN=3.3V) CDRH127-10µH R1224N182G (VIN=5.0V) CDRH127-10µH
19
R1224N
R1224N182G (VIN=12V) CDRH127-10µH R1224N182H (VIN=3.3V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182H (VIN=5.0V) CDRH127-10µH R1224N182H (VIN=12V) CDRH127-10µH
R1224N182L (VIN=3.3V) CDRH127-27µH R1224N182L (VIN=5.0V) CDRH127-27µH
20
R1224N
R1224N182M (VIN=3.3V) CDRH127-27µH R1224N182M (VIN=5.0V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182M (VIN=12V) CDRH127-27µH R1224N332E (VIN=7.0V) CDRH127-10µH
R1224N332E (VIN=4.8V) CDRH127-10µH R1224N332F (VIN=7.0V) CDRH127-10µH
21
R1224N
R1224N332F (VIN=4.8V) CDRH127-10µH R1224N332G (VIN=12V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332G (VIN=4.8V) CDRH127-10µH R1224N332G (VIN=10V)
R1224N332G (VIN=16V) R1224N332G (VIN=15V) CDRH127-10µH
22
R1224N
R1224N332H (VIN=12V) CDRH127-10µH R1224N332H (VIN=4.8V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332H (VIN=15V) CDRH127-10µH R1224N332L (VIN=7.0V) CDRH127-27µH
R1224N332L (VIN=4.8V) CDRH127-27µH R1224N332M (VIN=12V) CDRH127-27µH
23
R1224N
R1224N332M (VIN=4.8V) CDRH127-27µH R1224N332M (VIN=5V)
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(A)
012345
86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84
Output Current l
OUT
(A)
012345
86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84 86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84
Output Current l
OUT
(A)
01234
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332M (VIN=10V) R1224N332M (VIN=18V)
R1224N332M (VIN=15V) CDRH127-27µH R1224N502E (VIN=6.5V) CDRH127-10µH
24
R1224N
R1224N502E (VIN=10V) CDRH127-10µH R1224N502F (VIN=6.5V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502F (VIN=10V) CDRH127-10µH R1224N502G (VIN=10V)
R1224N502G (VIN=16V) R1224N502G (VIN=6.5V) CDRH127-10µH
25
R1224N
R1224N502G (VIN=12V) CDRH127-10µH R1224N502G (VIN=15V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502H (VIN=6.5V) CDRH127-10µH R1224N502H (VIN=12V) CDRH127-10µH
R1224N502H (VIN=15V) CDRH127-10µH R1224N502L (VIN=6.5V) CDRH127-27µH
26
R1224N
R1224N502L (VIN=10V) CDRH127-27µH R1224N502M (VIN=6.5V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502M (VIN=12V) CDRH127-27µH R1224N502M (VIN=15V) CDRH127-27µH
*Note: Typical characteristics 2) are obtai ned with using the following components;
PMOS : IRF7406 (IR)
L : CDRH127-100MC (Sumida: 10µH) C2 : 0.1µF (Ceramic Type)
SD : RB083L-20 (Rohm) C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)
C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)×2 R1 : 10
27
R1224N
3) Ripple Voltage vs. Output Current
R1224N182E L=10µH R1224N182F L=10µH
V
IN
5V
V
IN
3.3V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
R1224N182G L=10µH R1224N182H L=10µH
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
R1224N182L L=27µH R1224N182M L=27µH
V
IN
5V
V
IN
3.3V
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
28
R1224N
R1224N332E L=10µH R1224N332F L=10µH
V
IN
7V
V
IN
4.8V
V
IN
7V
V
IN
4.8V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 110
100 1000 10000
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
R1224N332G L=10µH R1224N332H L=10µH
V
IN
15V
V
IN
12V
V
IN
4.8V
V
IN
15V
V
IN
12V
V
IN
4.8V
R1224N332L L=27µH R1224N332M L=27µH
V
IN
7V
V
IN
4.8V
V
IN
15V
V
IN
12V
V
IN
4.8V
29
R1224N
R1224N502E L=10µH R1224N502F L=10µH
V
IN
10V
V
IN
6.5V
V
IN
10V
V
IN
6.5V
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
R1224N502G L=10µH R1224N502H L=10µH
V
IN
15V
V
IN
12V
V
IN
6.5V
V
IN
15V
V
IN
12V
V
IN
6.5V
R1224N502L L=27µH R1224N502M L=27µH
V
IN
10V
V
IN
6.5V
V
IN
15V
V
IN
12V
V
IN
6.5V
30
R1224N
4) Output Voltage vs. Input Voltage
R1224N182E L=10µH R1224N182F L=10µH
1mA
500mA
1mA
500mA
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
R1224N182G L=10µH R1224N182H L=10µH
-1mA
-500mA
-1mA
-500mA
R1224N182L L=27µH R1224N182M L=27µH
1mA
500mA
1mA
500mA
31
R1224N
R1224N332E L=10µH R1224N332F L=10µH
1mA
500mA
1mA
500mA
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
R1224N332G L=10µH R1224N332H L=10µH
-1mA
-500mA
-1mA
-500mA
R1224N332L L=27µH R1224N332M L=27µH
1mA
500mA
1mA
500mA
32
R1224N
R1224N502E L=10µH R1224N502F L=10µH
1mA
500mA
1mA
500mA
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
R1224N502G L=10µH R1224N502H L=10µH
-1mA
-500mA
-1mA
-500mA
R1224N502L L=27µH R1224N502M L=27µH
1mA
500mA
1mA
500mA
33
R1224N
5) Output Voltage vs. Temperature
R1224N332E R1224N122F
3.33
3.32
3.31
3.30
3.29
3.28
3.27
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
1.210
1.205
1.200
1.195
1.190
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
R1224N602L R1224N102G
6.10
6.05
6.00
5.95
5.90
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
1.010
1.005
1.000
0.995
0.990
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
360
330
300
270
240
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 6035-15 85
600
550
500
450
400
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 35-15 60 85
6) Oscillator Frequency vs. Temperature
R1224N102G R1224N102H
34
R1224N
R1224N102M
216
198
180
162
144
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 6035-15 85
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
7) Supply Current vs. Temperature
R1224N332E R1224N602L
R1224N602F R1224N102G
35
R1224N
R1224N102H R1224N102M
60
50
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(µA)
-40 10 6035-15 85
15
10
5
Temperature Topt(˚C)
Soft-start time Tsoft(ms)
-40 10 6035-15 85
30
25
20
15
10
Temperature Topt(˚C)
-15-40 35 856010
Delay Time for Protection Tprot(ms)
8) Soft-start time vs. Temperature
R1224N102G
9) Delay Time for Protection vs. Temperature
R1224N332E
36
R1224N
10) EXT “H” Output Current vs. Temperature
R1224N332E
-10
-15
-20
-25
Temperature Topt(˚C)
EXT "H" Output Current I
EXTH
(mA)
-40 10 6035-15 85
50
40
30
20
Temperature Topt(˚C)
EXT "L" Output Current I
EXTL
(mA)
-40 10 6035-15 85
Time(sec)
-0 -0 0
1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
11) EXT “L” Output Current vs. Temperature
R1224N332E
12) Load Transient Response
R1224N332G L=10µH VIN=4.8V R1224N332G L=10µH VIN=4.8V
37
R1224N
R1224N332G L=10µH VIN=10V R1224N332G L=10µH VIN=10V
Time(sec)
-0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
-2E-04 -1E-04 0
0.0001 0.0002 0.0003 0.0004
R1224N332H L=10µH VIN=4.8V R1224N332H L=10µH VIN=4.8V
R1224N332H L=10µH VIN=10V R1224N332H L=10µH VIN=10V
38
R1224N
R1224N332M L=27µH VIN=4.8V R1224N332M L=27µH VIN=4.8V
Time(sec)
-2E-04 -1E-04 0
0.0001 0.0002 0.0003 0.0004
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
2.20
2.05
2.10
2.15
2.00
1.95
1.90
Temperature Topt(˚C)
-15-40 10 35 8560
UVLO Voltage V
UVLO
(V)
R1224N332M L=27µH VIN=10V R1224N332M L=27µH VIN=10V
12) UVLO Voltage vs. Temperature
R1224N332E
39
PAC
K
AGE INFORMATION PE-SOT-23-5-071228
SOT-23-5 (SC-74A) Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
0.4±0.1
1.9±0.2
(0.95) (0.95)
54
123
+0.2
0.1
1.6
+0.2
0.1
1.1
+0.1
0.05
0.15
2.8–0.3
0 to 0.1
0.8±0.1
0.2 Min.
TAPING SPECIFICATION
2.0Max.
0.3–0.1 4.0–0.1 2.0–0.05
4.0–0.1
3.3
3.2
8.0–0.3
1.75–0.1
3.5–0.05
φ1.5+0.1
0
1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)
(1reel=3000pcs)
2±0.5
11.4±1.0
9.0±0.3
13±0.2
60
+1
0
180
0
1.5
21±0.8
PAC
K
AGE INFORMATION PE-SOT-23-5-071228
POWER DISSIPATION (SOT-23-5)
This specification is at moun ted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
(Power Dissip ation (SOT-23-5) is substitution of SOT-23-6.)
Measurement Conditions
Standard Land Pattern
Environment Mounting on Board (Wind velocity=0m/s)
Board Material Glass cloth epoxy plastic (Double sided)
Board Dimensions 40mm × 40mm × 1.6mm
Copper Ratio Top side : Approx. 50% , Back side : Approx. 50%
Through-hole φ0.5mm × 44pcs
Measurement Result (Topt=25°C, Tjmax=125°C)
Standard Land Pattern Free Air
Power Dissipation 420mW 250mW
Thermal Resistance θja=(12525°C)/0.42W=238°C/W 400°C/W
0 50 10025 75 85 125 150
Ambient Temperature (°C)
0
200
100
300
400
250
420
500
600
Power Dissipation P
D
(mW)
On Board
Free Air
40
40
Power Dissipation Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.7 MAX.
0.95
0.951.9
2.4
1.0
(Unit: mm)
MARK INFORMATION ME-R1224N-0612
R1224N SERIES MARK SPECIFICATION
SOT-23-5 (SC-74A)
1 2 3 4 5
1
,
2
,
3
: Product Code (refer to Part Number vs. Product Code)
4
,
5
: Lot Number
Part Number vs. Product Code
Product Code Product Code Product Code
Part Number
1
2
3
Part Number
1 2 3
Part Number
1 2 3
R1224N102G G 1 0 R1224N102H H 1 0 R1224N102M M 1 0
R1224N122G G 1 2 R1224N122H H 1 2 R1224N122M M 1 2
R1224N152G G 1 5 R1224N132H H 1 3 R1224N152M M 1 5
R1224N182G G 1 8 R1224N152H H 1 5 R1224N182M M 1 8
R1224N252G G 2 5 R1224N182H H 1 8 R1224N252M M 2 5
R1224N302G G 3 0 R1224N252H H 2 5 R1224N302M M 3 0
R1224N332G G 3 3 R1224N302H H 3 0 R1224N312M M 3 1
R1224N362G G 3 6 R1224N332H H 3 3 R1224N332M M 3 3
R1224N402G G 4 0 R1224N362H H 3 6 R1224N502M M 5 0
R1224N502G G 5 0 R1224N402H H 4 0 R1224N552M M 5 5
R1224N552G G 5 5 R1224N462H H 4 6 R1224N602M M 6 0
R1224N602G G 6 0 R1224N472H H 4 7 R1224N122 L L 1 2
R1224N122E E 1 2 R1224N502H H 5 0 R1224N152 L L 1 5
R1224N152E E 1 5 R1224N552H H 5 5 R1224N182 L L 1 8
R1224N182E E 1 8 R1224N602H H 6 0 R1224N252 L L 2 5
R1224N222E E 2 2 R1224N122F F 1 2 R1224N302 L L 3 0
R1224N252E E 2 5 R1224N152F F 1 5 R1224N312 L L 3 1
R1224N262E E 2 6 R1224N182F F 1 8 R1224N332 L L 3 3
R1224N272E E 2 7 R1224N252F F 2 5 R1224N502 L L 5 0
R1224N302E E 3 0
R1224N262F F 2 6
R1224N552 L L 5 5
R1224N332E E 3 3
R1224N302F F 3 0 R1224N602 L L 6 0
R1224N502E E 5 0
R1224N322F F 3 2
R1224N552E E 5 5
R1224N332F F 3 3
R1224N602E E 6 0
R1224N362F F 3 6
R1224N502F F 5 0
R1224N552F F 5 5
R1224N602F F 6 0