This is information on a product in full production.
April 2018 DocID027886 Rev 7 1/100
VNQ7003SY
Quad-channel high-side driver with 16-bit SPI interface for
automotive applications
Datasheet - production data
Features
AEC-Q100 qualified
General
16-bit ST-SPI for full diagnostic with 8 bits
Short Frame option
Programmable Bulb/LED mode for
ch. 0-1
Advanced limp home functions for robust
fail-safe system
Very low standby current
Optimized electromagnetic emissions
Very low electromagnetic susceptibility
Control through direct inputs and / or SPI
Compliant with European directive
2002/95/EC
Diagnostic functions
Multiplex proportional load current sense
Synchronous diagnostic of over load and
short to GND, output shorted to VCC and
OFF-state open-load
Programmable case overtemperature
warning
Protection
Two levels load current limitation
Self limiting of fast thermal transients
Undervoltage shutdown
Overvoltage clamp
Latch-off or programmable time limited
auto restart (power limitation and
overtemperature shutdown)
Load dump protected
Protection against loss of ground
Description
The VNQ7003SY is a device made using
STMicroelectronics® VIPower® technology. It is
intended for driving resistive or inductive loads
directly connected to ground. The device is
protected against voltage transient on VCC pin.
An 8 bit short frame access to output control
registers is provided allowing PWM control
through SPI with high granularity.
An analog current feedback for each channel is
connected to the CURRENT-SENSE pin via a
multiplexer. The device detects open-load in OFF-
state conditions.
Real time diagnostic is available through the SPI
bus (open-load, output short to VCC,
overtemperature, communication error, power
limitation or latch off).
Output current limitation protects the device in an
over load condition. The device can limit the
dissipated power to a safe level up to thermal
shutdown intervention. Thermal shutdown can be
configured as latched off or programmable time
limited auto restart.
The device enters a limp home mode in case of
loss of digital supply (VDD), reset of digital
memory or watchdog monitoring time-out event.
In this mode states of channel 0, 1, 2 or 3 are
respectively controlled by four dedicated pins IN0,
IN1, IN2 and IN3. Channel 0 and 1 can be
programmed via SPI for load type (BULB/ LED
mode).
Channel VCC RON(typ) ILIMH(typ)
0–1 28 V 25 m35 A
2–3 28 V 7 m80 A
www.st.com
Contents VNQ7003SY
2/100 DocID027886 Rev 7
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Device interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2.1 Startup transition phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Fail Safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Sleep mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.7 Sleep mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.8 Battery undervoltage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.9 Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Pre-warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Junction overtemperature (OT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Power limitation (PL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 SPI communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 SPI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 SDI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 SDO format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Special commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Global Status byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DocID027886 Rev 7 3/100
VNQ7003SY Contents
4
4.3.4 SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Output switching slopes control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Address 0x00h — Control Register (CTLR) . . . . . . . . . . . . . . . . . . . . . 40
4.6.2 Address 0x01h — Direct Input Enable Control Register (DIENCR) . . . 41
4.6.3 Address 0x02h — Open-load OFF-State Control Register (OLOFFCR) 42
4.6.4 Address 0x03h — Channel Control Register (CCR) . . . . . . . . . . . . . . . 42
4.6.5 Address 0x04h — Fast Switching Configuration Register (FASTSWCR) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.6 Address 0x06h — CurrentSense Multiplexer Control Register
(CSMUXCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.7 Address 0x07h — SPI Output Control Register (SOCR) . . . . . . . . . . . . 43
4.6.8 Address 0x08h — Channel Latch OFF Timer Control Register (ch0, ch1)
(CHLOFFTCR0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.9 Address 0x09h — Channel Latch OFF Timer Control Register (ch2, ch3)
(CHLOFFTCR2,3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Analogue diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Digital diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Over load (VDS high voltage, Over Load (OVL)) . . . . . . . . . . . . . . . . . . . 48
5.4 Open-load ON-state detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Open-load OFF-state detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Address 0x2Fh — DIENSR: Direct Input Status register . . . . . . . . . . . . . 50
5.7 Address 0x30h — Channel Feedback Status Register (CHFBSR) . . . . . 51
5.8 Address 0x31h — Open-load OFF-State / Stuck to VCC Status Register
(OLOFFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.9 Address 0x32h — Channels latch-off status register (CHLOFFSR) . . . . 52
5.10 Address 0x33h — VDS Feedback Status Register (VDSFSR) . . . . . . . . 52
5.11 Address 0x34h — Generic Status Register (GENSR) . . . . . . . . . . . . . . . 53
5.12 Address 0x3Fh — Configuration Register (CONFIG) . . . . . . . . . . . . . . . 53
6 Programmable blanking window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Contents VNQ7003SY
4/100 DocID027886 Rev 7
6.2 Blanking window values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.1 BULB mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.2 LED mode (Channel 0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8 ISO Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.1 PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
11 Maximum demagnetization energy (VCC = 16 V) . . . . . . . . . . . . . . . . . 85
12 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12.1 PowerSSO-36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12.2 PowerSSO-36 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.3 PowerSSO-36 marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
13 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
DocID027886 Rev 7 5/100
VNQ7003SY List of tables
6
List of tables
Table 1. Pin functionality description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Frame 1: write CTRL 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Frame 1: read (ROM) 0x3FH 0x--. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Frame 1: write CTRL 0x10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Frame 2: write CTRL 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Frame 1: write CTRL 0x10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Frame 2: write CTRL 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Frame 2: write CTRL 0x11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 9. Frame 2: write CTRL 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 11. SPI signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 13. Input data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 14. Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 15. Output data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 16. Operating codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 17. 0xFF: SW_Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 18. Clear all status registers (RAM access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 19. Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 20. RAM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 21. ROM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 22. SPI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 23. SPI Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 24. SPI Data Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 25. SPI 8 bit Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 26. SPI Data Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 27. Switching slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 28. Write SOCR 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 29. Write SOCR Dummy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 30. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 31. CTLR — Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 32. DIENCR — Direct Input Enable Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 33. OLOFFCR — Open-load OFF-state control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 34. CCR — Channel control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 35. FASTSWCR — Fast Switching Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 36. CSMUXCR — CurrentSense Multiplexer Control Register. . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 37. Truth table for CurrentSense Mux Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 38. SOCR — SPI Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 39. Channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 40. CHLOFFTCR0,1 — Channel Latch OFF Timer Control Register (ch0, ch1) . . . . . . . . . . . 44
Table 41. CHLOFFTCR2,3 — Channel Latch OFF Timer Control Register (ch2, ch3) . . . . . . . . . . . 44
Table 42. Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 43. STKFLTR state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 44. DIENSR — Direct Input Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 45. CHFBSR — Channel Feedback Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 46. STKFLTR — Open-load OFF-State / Stuck to VCC Status Register . . . . . . . . . . . . . . . . . 51
Table 47. CHLOFFSR — Channels latch-off status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 48. VDSFSR — VDS Feedback Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List of tables VNQ7003SY
6/100 DocID027886 Rev 7
Table 49. GENSR — Generic Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 50. CONFIG — Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 51. Time values written by MCU and their real value in timer register . . . . . . . . . . . . . . . . . . . 58
Table 52. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 53. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 54. DC characteristics - Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 55. DC characteristics - Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 56. AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 57. AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 58. Dynamic characteristics - Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 59. Dynamic characteristics - Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 60. VREG pin - Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 61. Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 62. Logic inputs (IN0,1,2,3 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 63. Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 64. Open-load detection (7V < VCC < 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 65. BULB - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 66. BULB - switching (VCC = 13 V; Normal switch mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 67. BULB - switching (VCC = 13 V; Fast switch mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 68. BULB - protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 69. BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj = -40 °C to 150 °C) . . . . . . . . . 70
Table 70. BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj = -40 °C to 150 °C) . . . . . . . . . 72
Table 71. LED - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 72. LED - switching (VCC = 13 V; Normal switch mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 73. LED - switching (VCC = 13 V; Fast switch mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 74. LED - protection and diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 75. LED - CurrentSense (7 V < VCC < 18 V; Tj = -40 °C to 150 °C) . . . . . . . . . . . . . . . . . . . . 74
Table 76. ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . . 77
Table 77. Component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 78. PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 79. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 80. PowerSSO-36 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 81. Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 82. PowerSSO-36 carrier tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 83. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 84. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
DocID027886 Rev 7 7/100
VNQ7003SY List of figures
7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Connection diagram (top view—not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. Battery undervoltage shutdown diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. Device state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. Power limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Supported SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. Bus master and two devices in a normal configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. SDI Frame 8 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. SDO Frame 8 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. SPI write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. SPI read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 14. SPI read and clear operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 15. SPI read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 16. VNQ7003SY: 4-channel direct input block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. Diagnostic registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 18. Open-load OFF-state detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 19. Diagnostic flowchart based on GSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 20. Diagnostic flowchart for open-load off-state respectively stuck to VCC failure. . . . . . . . . . 55
Figure 21. Diagnostic flowchart for digital overload detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 22. Internal timer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 23. VNQ7003SY CHLOFFSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 24. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 25. CurrentSense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 26. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 27. M0-7 SPI Standard connection SPI only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 28. M0-7 SPI standard, full connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 29. PowerSSO-36 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 30. Rthj-amb vs PCB copper area in open box free air conditions . . . . . . . . . . . . . . . . . . . . . . 81
Figure 31. PowerSSO-36 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . 82
Figure 32. Thermal fitting model for PowerSSO-36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 33. Maximum turn off current versus inductance - Channel 0,1 . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 34. Maximum turn off current versus inductance - Channel 2,3 . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 35. PowerSSO-36 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 36. PowerSSO-36 reel 13" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 37. PowerSSO-36 carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 38. PowerSSO-36 schematic drawing of leader and trailer tape . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 39. PowerSSO-36 marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Block diagram and pin description VNQ7003SY
8/100 DocID027886 Rev 7
1 Block diagram and pin description
Figure 1. Block diagram
DocID027886 Rev 7 9/100
VNQ7003SY Block diagram and pin description
93
Figure 2. Connection diagram (top view—not to scale)
Note: Pins 31,32,33,34,35 and 36 (OUTPUT3) must be connected together.
Note: Pins 27,28,29 and 30 (OUTPUT0) must be connected together.
Note: Pins 7,8,9 and 10 (OUTPUT1) must be connected together.
Note: Pins 1,2,3,4,5 and 6 (OUTPUT2) must be connected together.
Table 1. Pin functionality description
Pin number Name Function
—V
CC Battery connection. This is the backside TAB and is the direct connection to drain
Power MOSFET switches.
19, 20 GND Ground connection. This pin serves as the ground connection for the logic part of
the device.
13 GND
Ground connection. This is a Kelvin ground connection for the logic part of the
device and is used to connect an external EMC capacitor to the VREG pin.
It must not be connected to application ground.
27, 28,29, 30 OUTPUT0 Power OUTPUT 0. It is the direct connection to the source Power MOSFET
switch No. 0.
7, 8, 9, 10 OUTPUT1 Power OUTPUT 1. It is the direct connection to the source Power MOSFET
switch No. 1.
1, 2, 3, 4,5, 6 OUTPUT2 Power OUTPUT 2. It is the direct connection to the source Power MOSFET
switch No. 2.
Block diagram and pin description VNQ7003SY
10/100 DocID027886 Rev 7
31,32,33,
34,35,36 OUTPUT3 Power OUTPUT 3. It is the direct connection to the source Power MOSFET
switch No. 3.
15 CSN Chip select not (active low). It is the selection pin of the device. It is a CMOS
compatible input.
16 SCK Serial clock. It is a CMOS compatible input.
17 SDI Serial data input. Transfers data to be written serially into the device on SCK
rising edge.
18 SDO Serial data output. Transfers data serially out of the device on SCK falling edge.
14 VREG Output of the 3 V regulated internal supply for the digital control. Connect a low
ESR capacitor close to this pin.
22 IN0
Direct Input pin for channel 0. Controls the OUTPUT 0 state in limp home mode,
is ORed to SPI control register in normal operating mode when corresponding bit
is set in DIENCR (Direct Input ENable) control register.
23 IN1
Direct Input pin for channel 1. Controls the OUTPUT 1 state in limp home mode,
is ORed to SPI control register in normal operating mode when corresponding bit
is set in DIENCR (Direct Input ENable) control register.
24 IN2
Direct Input pin for channel 2. Controls the OUTPUT 2 state in limp home mode,
is ORed to SPI control register in normal operating mode when corresponding bit
is set in DIENCR (Direct Input ENable) control register.
25 IN3
Direct Input pin for channel 3. Controls the OUTPUT 3 state in limp home mode,
is ORed to SPI control register in normal operating mode when corresponding bit
is set in DIENCR (Direct Input ENable) control register.
12 VDD External 5 V or 3.0 V supply. Powers the SPI interface.
21 CurrentSense
Analog CurrentSense generator proportional to output current. CurrentSense can
be programmed as bulb/LED mode for each channel. The pin can deliver the
CurrentSense of OUTPUT 0, 1, 2 or 3. The value of resistance that is connected
between the CurrentSense pin and device ground determines the reading level
for the microcontroller.
11, 26 NC Not connected
Table 1. Pin functionality description (continued)
Pin number Name Function
DocID027886 Rev 7 11/100
VNQ7003SY Functional description
93
2 Functional description
2.1 Device interfaces
SPI: bi-directional interface, accessing RAM/ROM registers (CSN, CLK, SDI, SDO)
INx: input pins for outputs control while device is in Fail Safe mode, Standby mode or
Reset mode
(usable also in Normal mode according to "Direct Input Enable Control
Register" - DIENCR setting)
CSense: current-sense output used for analogue monitoring (monitored signal
selection via RAM
register)
VDD: 5 V supply / 3 V option: VDD can be shared with microcontroller for 3 V or 5 V.
This gives the
range of the SPI for 3 V to 5 V. The VREG block is able to handle both
the 3 V and 5 V.
2.2 Operating modes
The device can operate in seven different modes:
Reset mode
Fail Safe mode
Normal mode
Standby mode
Sleep mode 1
Sleep mode 2
Battery undervoltage mode
The Reset mode, the Fail Safe mode and the Sleep mode 1 are combined into the Limp
home mode. In
this mode the chip is able to operate without the connection to the SPI. All
transitions between the states
in limp home mode are driven by VDD and INx. The outputs
are controlled by the direct inputs INx.
For an overview over the operating modes and the triggering conditions please refer to Table 10:
Operating modes.
2.2.1 Startup transition phase
This is not an operation mode but a transition step to Reset operation mode from the
power-ON. In this
phase, neither digital supply voltage VDD nor VCC are available (VDD < VDD_POR_ON and VCC < VUSD).
This phase has not to be confused with Undervoltage mode where also the power supply is
not available
(VCC < VUSD) after an operation mode. The device leaves this phase to Reset
mode as soon as VCC >
VUSD. In case (VCC < VUSD) but (VDD > VDD_POR_ON) then the device
leaves this phase to Fail-Safe-Mode.
2.2.2 Reset mode
The device is in Limp Home state.
Reset mode is entered after Startup but also each time the digital supply voltage VDD falls
below
VDD_POR_OFF (VDD < VDD_POR_OFF and VCC > VUSD).
The outputs are controlled by the direct inputs INx. At least one INx is in logic High.
The SPI is inactive (no read / write possible) and the diagnostics are not available. The
registers have the
Reset values.
Functional description VNQ7003SY
12/100 DocID027886 Rev 7
The device leaves this mode only if VDD > VDD_POR_ON or all INx go to low.
The reset bit inside the Global Status Byte is set to 0 (for more information refer to the
Global Status Byte
register description).
The diagnostics is not available, but the protections are fully functional. In case of
overtemperature or
power limitation, the outputs work in unlimited auto-restart.
The device enters Reset mode under three conditions:
Automatically during startup
If it is in any other mode and if VDD falls below VDD_POR_OFF
If it is in Sleep mode 1 and if only one input INx is set to 1
Reset mode can be left with 2 conditions:
If VDD rises above VDD_POR_ON, the device enters Fail Safe mode
If all inputs INx are 0, the device enters Sleep mode 1.
2.2.3 Fail Safe mode
The device is in Limp Home state.
The digital supply voltage VDD is available (VDD > VDD_POR_ON) and the SPI registers are
active (SPI
read/write).
The device enters Fail Safe mode under five conditions:
If it is in Reset mode or in Sleep mode 1 and VDD rises above VDD_POR_ON,
(VDD > VDD_POR_ON)
If it is in Standby mode or in Sleep mode 2 and CSN is low for t > tstdby_out
If it is in Normal mode and bit EN is cleared
If it is in Normal mode and WDTB is not toggled within tWDTB (watchdog timeout)
If it is in Normal mode and the SPI sends a SW reset
In case of Fail Safe mode, there is no analogue diagnostics (CurrentSense is inactive, not
available) but
the digital diagnosis is available through SPI bus.
The outputs are controlled by the direct inputs INx regardless of SPI commands.
The registers are cleared to their reset value if Fail Safe is entered through a SW reset.
The reset bit is 1 if the last state was Reset mode or the last command was a SW reset and
it is reset to 0
after the first valid SPI access (for more information refer Section 4.3.1: Global Status byte description).
The SPI diagnostics is available.
The protections are fully functional. In case of overtemperature or power limitation, the
outputs work in
unlimited auto-restart.
The device exits Fail Safe mode under three conditions:
If the SPI sends the goto Normal mode sequence, the device enters Normal mode:
In a first communication set bit UNLOCK = 1
In the consecutive communication set bit STBY = 0 and bit EN = 1
This mechanism avoids entering the Normal mode unintentionally.
If the SPI sends the goto standby mode sequence, the device enters Standby mode:
In a first communication set bit UNLOCK = 1
In the consecutive communication set bit STBY = 1 and bit EN = 0
DocID027886 Rev 7 13/100
VNQ7003SY Functional description
93
This mechanism avoids entering the Standby mode unintentionally.
If VDD falls below VDD_POR_OFF
, the device enters Reset mode.
Transition to Fail-Safe-mode from Normal mode, using the SPI register
Only one frame is needed.
Transition to Fail-Safe-mode from Normal mode by SW-Reset
SPI Reset is occurring by using the “Read device information” command (applicable only
on ROM area)
at reserved ROM address 0x3F. This is equivalent of sending a 0xFF
command.
Only one frame is needed.
2.2.4 Normal mode
In this mode, all device functions are available. The transition to this mode is only possible
from a
previous Fail-Safe mode.
Outputs can be driven by SPI commands or a combination of SPI command and direct
inputs INx.
To maintain the device in normal mode, the watchdog toggle bit in register CONFIG has to
be toggled
within the watchdog timeout period tWDTB (see Table 58: Dynamic characteristics - Mode 1or Ta ble 59:
Dynamic characteristics - Mode 2).
Table 2. Frame 1: write CTRL 0x00
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x(1)
1. To avoid an SPI Error Frame due to a stuck at Zero, one bit of data field has to be at '1'. Bit “EN” has to be at ‘0’ to force the
device in Fail safe mode.
x(1) GOSTBY UNLOCK x(1) xx
EN(1)
X(2)
2. X: do not care.
Table 3. Frame 1: read (ROM) 0x3FH 0x--
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
11111111
Data(1)
1. The "X" data field cannot be all ones, otherwise a stuck to VDD is detected.
xxxxxxxx
X(2)
2. X: do not care.
Functional description VNQ7003SY
14/100 DocID027886 Rev 7
Diagnosis is available through SPI bus (digital) and through CurrentSense pin (analogue
CurrentSense).
The protections are fully functional. The outputs can be set to latch-off or programmable
time limited auto-
restart. In auto-restart the outputs are switched on again automatically
after an overtemperature or power
limitation event, while in latch the relevant status register has to be cleared to switch them on again. In
time limited auto-restart the behavior
is like auto-restart but within limited programmed time frame (refer to
Section 6.2: Blanking window values).
The device enters Normal mode under one condition:
If it is in Fail Safe mode and the go to Normal mode sequence is sent through SPI:
this mechanism avoids entering Normal mode unintentionally.
In a first communication set bit UNLOCK = 1
In the consecutive communication set bit STBY = 0 and bit EN = 1
The transition from Fail-Safe-mode to Normal mode is performed by two special SPI
sequences
Table 4. Frame 1: write CTRL 0x10
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 0 1 0000
Table 5. Frame 2: write CTRL 0x01
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 0 0 0001
DocID027886 Rev 7 15/100
VNQ7003SY Functional description
93
Normal mode can be left with five conditions:
If VDD falls below VDD_POR_OFF
, the device enters Reset mode.
If the SPI sends the goto standby sequence, the device enters Standby mode:
this mechanism avoids entering Standby mode unintentionally.
In a first communication set UNLOCK = 1
In the consecutive communication set STBY = 1 and EN = 0
If the SPI clears the EN bit (EN = 0), the device enters Fail Safe mode.
Watchdog time out: If WDTB is not toggled within the monitoring timeout period tWDTB,
the device
enters Fail Safe mode.
If the SPI sends a SW reset command (Command byte = 0xFFh), all registers are
cleared and the
device enters Fail Safe mode.
2.2.5 Standby mode
The device is in low consumption state of the digital part.
The device enters Standby mode under three conditions:
If it is in Fail Safe mode and the SPI sends the goto standby sequence:
this mechanism avoids entering Standby mode unintentionally.
In a first communication set UNLOCK = 1
In the consecutive communication set STBY = 1 and EN = 0
If it is in Normal mode and the SPI sends the goto standby sequence:
This mechanism avoids entering Standby mode unintentionally.
In a first communication set UNLOCK = 1
In the consecutive communication set STBY = 1 and EN = 0
If it is in Sleep mode 2 and at least one input INx is set to one.
The outputs are controlled by the direct inputs INx only.
The current consumption from VDD drops down to IDDstd (see Table 54: DC characteristics - Mode 1).
The digital supply voltage VDD is available (VDD > VDD_POR_ON) but SPI is inactive (no
read/Write is
possible, the SPI registers are frozen to their last state before entering
standby mode).
The Standby mode will stay under above condition if at least one INx in logic High.
CSN is in inactive High
state (independent of MCU).
The diagnostics is not available.
The protections are fully functional. The outputs are set to unlimited auto-restart mode.
Standby mode
can be left with three conditions:
If VDD falls below VDD_POR_OFF, the device enters Reset mode.
If CSN is low for t > tstdby_out, the device wakes up. As the EN bit has been set to 0, the
device enters
Fail Safe mode and recovers full functionality with command of the
outputs and diagnostics.
If all direct inputs INx are 0, the device enters Sleep Mode 2 resulting in minimal
supply current from
VCC and VDD.
Functional description VNQ7003SY
16/100 DocID027886 Rev 7
Transition from Fail-Safe-mode to Standby mode using SPI: two frames needed.
Transition from Normal mode to Standby mode using SPI: two frames needed
Table 6. Frame 1: write CTRL 0x10
Bit 7 Bit 6 Bit 5 Bit 4Frame 1: Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 0 1 0000
Table 7. Frame 2: write CTRL 0x20
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 1 0 0000
Table 8. Frame 2: write CTRL 0x11
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 0 1 0001
Table 9. Frame 2: write CTRL 0x20
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0000
Data
x x GOSTBY UNLOCK x x x EN
00 1 0 0000
DocID027886 Rev 7 17/100
VNQ7003SY Functional description
93
2.2.6 Sleep mode 1
The device is in Limp Home state.
The device has very low consumption for both digital and power parts. Current
consumption from Digital
part is nearly zero and the current consumption on VCC is below
ISTBY (low supply current).
The device enters Sleep mode 1 under one condition:
If from Reset mode, all direct inputs INx are going low.
The digital supply voltage VDD is not available (VDD < VDD_POR_OFF) and SPI is inactive (the
read and write
functions are not possible and all registers are cleared and have the reset
values).
The diagnostics is not available (neither Analogue nor digital diagnostics).
The output stages are all off.
Protections are inactive.
Sleep-mode-1 can be left with two conditions:
If VDD rises above VDD_POR_ON, the device enters Fail Safe mode.
If at least one of the inputs INx is set to 1, the device enters Reset mode.
2.2.7 Sleep mode 2
The device is in very low consumption state for both digital and power parts. Current
consumption from
Digital part is below IDDstd and the current consumption on VCC is below
ISOFF (low supply current).
The digital supply voltage VDD is available (VDD > VDD_POR_ON) but SPI is not active (the read
and write
functions are not possible and all registers are frozen).
CSN is in inactive High state (independent of MCU).
The diagnostics is not available (neither analogue nor digital diagnostics).
The output stages are all off.
Protections are inactive.
The device enters Sleep-mode-2 under one condition:
If from Standby mode, all direct inputs INx are going low.
Sleep mode 2 can be left with three conditions:
If VDD falls below VDD_POR_ON, the device enters Reset mode.
If CSN is low for t > tstdby_out, the device enters Fail Safe mode.
If at least one of the inputs INx is set to 1, the device enters Standby mode.
2.2.8 Battery undervoltage mode
This is not an operation mode but a transition step, where power supply voltage is
(VCC < VUSD).
If the battery supply voltage VCC falls below the undervoltage shutdown threshold
(VCC < VUSD) the device
enters Battery undervoltage mode.
The CurrentSense signal is not available.
The output stages are off regardless of SPI status or INx.
There are three cases and, depending on the operation mode, the following occurs:
1. From Normal mode and from Fail-safe mode:
In these modes the digital supply voltage VDD is available (VDD > VDD_POR_ON). The SPI
is active and
read/write functions are possible. The SPI diagnostics is available. After
entering to the
Undervoltage mode, the information about the undervoltage is saved in
a flag (VCCUV), the SPI
Functional description VNQ7003SY
18/100 DocID027886 Rev 7
register contents are retained. The SPI-register reading is
always possible. If VCC rises above the
threshold (VUSD + VUSDhyst) the device returns to the last mode
and the flag is cleared (VCCUV).
If during this state VDD decreases to VDD < VDD_POR_OFF
, the device is reset completely.
The last
operation mode information is lost, the device logic part is unpowered,
therefore after increasing the
supply voltage to (VCC > VUSD + VUSDhyst) the operation
mode will be Reset mode.
If during this state, the INx is changed, the operation mode is not changed and the
output state is
changed accordingly after VCC recovering.
2. From Standby and Sleep-mode-2 modes:
In these modes the digital supply voltage VDD is available (VDD > VDD_POR_ON). The SPI
is not active
and the registers are frozen. The SPI diagnostics is not available. After
entering to the Undervoltage
mode, the information about the undervoltage is not
saved in a flag (VCCUV).
If VCC rises above the threshold (VUSD + VUSDhyst) the device returns to the last mode. If during this
state (undervoltage mode) VDD decreases to VDD < VDD_POR_OFF
, the
device is reset completely. The
last operation mode information is lost, the device
logic part is unpowered, therefore after increasing
the supply voltage to (VCC > VUSD +
VUSDhyst) the operation mode will be Reset-mode.
If during this state (under voltage mode) the INx is changed, the operation mode is
also changed.
After VCC recovering, this new operation mode is taken into account.
3. From Reset mode or Sleep-mode1:
In this modes the digital supply voltage VDD is not available (VDD < VDD_POR_OFF) and
SPI is not active.
It is not possible to read/write via SPI, all SPI registers have the
reset values. After entering to the
Undervoltage mode, the information about the
undervoltage is not saved in a flag (VCCUV).
If VCC rises above the threshold VUSD + VUSDhyst, the device returns to the last mode.
If during this
state VDD increases to VDD > VDD_POR_ON, the device is completely reset.
After VCC recovering (VCC >
VUSD + VUSDhyst), there will be a startup transition.
The undervoltage flag (VCCUV) is not saved in the following operation modes: Reset
mode, Sleep mode
1, Sleep mode 2 and Standby mode.
Figure 3. Battery undervoltage shutdown diagram
DocID027886 Rev 7 19/100
VNQ7003SY Functional description
93
Figure 4. Undervoltage shutdown
2.2.9 Limp Home mode
The Reset mode, the Fail Safe mode and the Sleep mode 1 are combined into the Limp
home mode. In
this mode the chip is able to operate without the connection to the SPI. All
transitions between the states
in limp home mode are driven by VDD and INx. The outputs
are controlled by the direct inputs INx.
For a direct entry to the Limp Home mode during Normal operating mode, MCU uses the
Watchdog
Toggle Bit (WDTB) or dedicated SPI command. Changing the polarity of the
WDTB within Watchdog
Timeout (tWDTB) keeps the device in Normal mode.
For an overview of the operating modes and the triggering conditions please refer to the
table below.
Table 10. Operating modes
Operating mode Entering conditions Leaving conditions Characteristics
Startup transition
(this is not an
operating mode)
–V
CC > VUSD: reset
(VDD > VDD_POR_ON) and (VCC
< VUSD): Fail Safe
Outputs: OFF
SPI: inactive
Registers: reset values
Diagnostics: not available
Reset bit = X
Reset
(Limp Home mode)
–Startup mode: V
CC >
VUSD
Sleep 1:
INx Low to High
Any other mode: VDD <
VDD_POR_OFF
All INx low: sleep 1
VDD > VDD_POR_ON: Fail Safe
Outputs: according to INx
SPI: inactive
Registers: reset values
Diagnostics: not available
Reset bit = X
Functional description VNQ7003SY
20/100 DocID027886 Rev 7
Sleep 1
(Limp Home mode) Reset: all INx = 0 –VDD > VDD_POR_ON: Fail Safe
INx low to high: reset
Outputs: OFF
SPI: inactive
Registers: reset values
Diagnostics: not available
Low supply current from VDD
and VCC
Reset bit = X
Fail Safe
(Limp Home mode)
Reset or sleep 1: VDD >
VDD_POR_ON
Standby or sleep 2:
–CSN low for t > tstdby_out
–Normal:
EN = 0 or WDTB
toggling timeout or SW-
reset
–V
DD < VDD_POR_OFF: reset
SPI sequence
1. UNLOCK = 1
2. STBY = 0 and EN = 1:
normal
SPI sequence
1. UNLOCK = 1
2. STBY = 1 and EN = 0:
Standby
Outputs: according to INx
SPI: active
Registers: read/write
possible, cleared if entered
after SW reset
Diagnostics: SPI possible,
CurrentSense diagnostic is
not possible
Reset bit = 1 if entered after
SW reset or POR, else
Reset bit = 0
Normal
Fail Safe: SPI
sequence
1. UNLOCK = 1
2. STBY = 0 and EN = 1
–V
DD < VDD_POR_OFF: reset
SPI sequence
1. UNLOCK = 1
2. STBY = 1 and EN = 0:
Standby
EN = 0 or WDTB time out or
SW reset: Fail- Safe
Outputs: according to SPI
register settings and/or INx
SPI: active
Registers: read/write is
possible
Diagnostics: SPI and
CurrentSense diagnostic
possible
Regular toggling of WDTB is
necessary within timeout
period tWDTB
Reset bit = 0
Standby
Normal: SPI sequence
1. UNLOCK = 1
2. STBY = 1 and EN = 0
–Fail Safe:
SPI sequence
1. UNLOCK = 1
2. STBY = 1 and EN = 0
Sleep 2:
INx low to high
VDD < VDD_POR_OFF: Reset
CSN low for t > tstdby_out: Fail-
Safe
All INx low: sleep 2
Outputs: OFF
SPI: inactive
Registers: frozen
Diagnostics: not available
Low supply current from
VDD and VCC
CSN: High
Reset bit = 0
Table 10. Operating modes (continued)
Operating mode Entering conditions Leaving conditions Characteristics
DocID027886 Rev 7 21/100
VNQ7003SY Functional description
93
Sleep 2 Standby: all INx = 0
–VDD > VDD_POR_OFF: reset
CSN low for t > tstdby_out: Fail-
Safe
INx low to high: Standby
Outputs: OFF
SPI: inactive
Registers: frozen
Diagnostics: not available
Low supply current from
VDD and VCC
CSN: High
Reset bit = 0
Battery undervoltage
(this is not an
operating mode)
Any mode: VCC < VUSD VCC > VUSD + VUSDhyst: back to
last mode
Outputs: OFF and
independent from INx and
SPI
SPI: as the last mode
Reset bit = 0
Table 10. Operating modes (continued)
Operating mode Entering conditions Leaving conditions Characteristics
Functional description VNQ7003SY
22/100 DocID027886 Rev 7
Figure 5. Device state diagram
DocID027886 Rev 7 23/100
VNQ7003SY Protections
93
3 Protections
3.1 Pre-warning
If the case-temperature rises above the case-thermal detection pre-warning threshold TCSD,
the bit TCASE
in the Global Status Byte is set. TCASE is cleared automatically when the case-
temperature drops below
the case-temperature reset threshold TCR.
3.2 Junction overtemperature (OT)
If the junction temperature of one channel rises above the shutdown temperature TTSD, an
overtemperature event (OT) is detected.
The channel is switched OFF and the corresponding bit in the Address 0x30h - Channel
Feedback Status
Register (CHFBSR) is set. Consequently, the thermal shutdown bit (bit 4)
in the Global Status Byte and
the Global Error Flag are set.
In Limp Home Mode each output channel works in unlimited auto-restart, whereas in
Normal Mode it can
be either set as latch-off or programmable time limited auto-restart
operations in case of junction
overtemperature event.
In Auto-restart operation, the output is switched off as described and switches on
again automatically
when the junction temperature falls below the reset temperature
TR. The status bit is latched during
OFF-state of the channel in order to allow
asynchronous diagnostic and it is automatically cleared
when the junction temperature
falls below the thermal reset temperature of OT detection TRS.
In Latched OFF operation, the output remains switched OFF until the junction
temperature falls
below TR and a write command to the addressed latched OFF
channel is sent (CHLOFFTCRx). The
action will clear the corresponding flag in
CHLOFFSR and bit 2 in the Global Status Byte. Bit 2 only
remains stuck at logic high
if another fault condition is present at the same time.
In time limited auto-restart, during the programmed time, it reacts as in auto-restart
operation mode.
After the programmed time expiration, the output remains switched
OFF and acts as above
described in latch-off mode.
Protections VNQ7003SY
24/100 DocID027886 Rev 7
Figure 6. Thermal shutdown
3.3 Power limitation (PL)
If the difference between junction temperature and case temperature (T = Tj – Tc) rises
above the power
limitation threshold TPLIM, a power limitation event is detected. The
channel is switched OFF and the
corresponding bit in the Address 0x30h - Channel
Feedback Status Register (CHFBSR) is set.
Consequently, the Power limitation bits (bit 4)
in the Global Status Byte and the Global Error Flag are set.
In Limp Home Mode each output channel works in unlimited auto-restart, whereas in
Normal Mode it can
be either set as latch-off or programmable time limited auto-restart
operations in case of power limitation
event.
In Auto-restart operation, the output is switched off as described and switches on
again automatically
when the difference of junction temperature and case temperature
(T = Tj - TC) decreases below
TPLIMR.
In OFF-state of the channel, the status bit is latched in order to allow asynchronous
diagnostic and is
cleared during a Read and Clear command.
The payload bits set to 1 into the data byte determine the bits into the register which have
to be cleared.
In Latched OFF operation, the output remains switched OFF until the difference of
junction
temperature and case temperature (T = Tj - TC) decreases below TPLIMR
and a write command to
the addressed latched OFF channel is sent (CHLOFFTCRx).
The action will clear the corresponding
flag in CHLOFFSR and bit 2 in the Global
Status Byte. Bit 2 only remains stuck at logic high if another
latch-off condition is
present at the same time.
In time limited auto-restart, during the programmed time, the device reacts as in auto-
restart
operation mode. After the programmed time expiration, the output remains
switched OFF and acts
as above described in latch-off mode.
DocID027886 Rev 7 25/100
VNQ7003SY Protections
93
Figure 7. Power limitation
&XUUHQW/LPLW
RXWSXW
,B/,0B+
21 21
ǻ756
ǻ7380
ǻ75
76'
3/
3RZHUOLPLWDWLRQ
2))
*$3*36
$)'#43
SPI functional description VNQ7003SY
26/100 DocID027886 Rev 7
4 SPI functional description
4.1 SPI communication
The SPI communication is based on a standard ST-SPI 16-bit interface, using CSN, SDI,
SDO and SCK
signal lines.
Input data are shifted into SDI, MSB first while output data are shifted out on SDO, MSB
first.
4.1.1 Signal description
During all operations, VDD must be held stable and within the specified valid range: VDD min
to VDD max.
Table 11. SPI signal description
Name Function
Serial clock SCK
This input signal provides the timing of the serial interface. Data present at Serial Data Input
(SDI) are latched on the rising edge of Serial Clock (SCK). Data on Serial Data Output (SDO)
change after the falling edge of Serial Clock (SCK).
Serial data input
SDI
This input signal is used to transfer data serially into the device. It receives data to be written.
Values are sampled on the rising edge of Serial Clock (SCK).
Serial data
output SDO
This output signal is used to transfer data serially out of the device. Data are shifted out on the
falling edge of Serial Clock (SCK).
Chip select CSN
When this input signal is High, the device is deselected and Serial Data Output (SDO) is high
impedance. Driving this input Low enables the communication. The communication must start
on a Low level of Serial Clock (SCK). Data are accepted only if exactly 16 bits (or 8 bits Short
Frame option) have been shifted in.
Note: as per the ST_SPI standard, in case of failing communication:
Stuck @HIGH:
If the device is in Normal Mode, a WDTB Timeout will force the device into Fail-safe mode. The
Serial Data-Out (SDO) will stay in High impedance (High Z).
Any valid communication arrived after this event will be accepted by the device.
Stuck @LOW:
in this case and whatever the mode of the device, a CSN Timeout protection will be activated
and force the device to release the SPI bus. Then the Serial Data-Out (SDO) will go into High
impedance (High Z).
A reset of the CSN Timeout (described as tSHCH parameter in Table 58: Dynamic characteristics -
Mode 1) is activated with a transition Low to High on CSN pin (or with a Power On Reset or
Software reset). With this reset, the Serial Data-Out (SDO) will be released and any valid
communication will be accepted by the device. Without this reset, next communication will not be
taken into account by the device.
DocID027886 Rev 7 27/100
VNQ7003SY SPI functional description
93
4.1.2 Connecting to the SPI bus
A schematic view of the architecture between the bus and devices can be seen in Figure 9: Bus master
and two devices in a normal configuration.
All input data bytes are shifted into the device, MSB first. The Serial Data Input (SDI) is
sampled on the
first rising edge of the Serial Clock (SCK) after Chip Select (CSN) goes
low.
All output data bytes are shifted out of the device on the falling edge of SCK, MSB first on
the first falling
edge of the Chip Select (CSN).
4.1.3 SPI mode
Supported SPI mode during a communication phase can be seen in the following figure:
Figure 8. Supported SPI mode
This device can be driven by a micro controller with its SPI peripheral running in the
following mode:
CPOL = 0, CPHA = 0
63,0DVWHU 9146<
6ODYH
&61
6&.
6',
6'2
06%
06%
/6%
/6%
&61
6&.
6',
6'2
0LFURFRQWUROOHU
*$3*36
SPI functional description VNQ7003SY
28/100 DocID027886 Rev 7
Figure 9. Bus master and two devices in a normal configuration
4.2 SPI protocol
4.2.1 SDI format
SDI, Frame 16-bit
SDI format during each communication frame starts with a command byte. It begins with
two bits of
operating code (OC0, OC1) which specify the type of operation (read, write, read and clear status, read
device information) and it is followed by a 6 bit address (A0:A5).
The command byte is followed by an
input data byte (D0:D7).
Table 13. Input data byte
SDI, Frame 8 bit
SPI Data-In Frame length 8 bits is defined for the device requiring fast write access to
single 8 bit register,
called SOCR address 0x07h. SDI Frame consists of Input Data Byte
content only, no Operation Code +
Address is transmitted.
Table 12. Command byte
MSB LSB
OC1 A5 A4 A3 A2 A1 A0
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
#64NBTUFS
41*JOUFSGBDFXJUI
$10-
$1)"
$4 $4 7/24: 7/24:
$4/ $4/
4$, 4%* 4%0 4$, 4%* 4%0
("1($'5
DocID027886 Rev 7 29/100
VNQ7003SY SPI functional description
93
Figure 10. SDI Frame 8 bits
4.2.2 SDO format
SDO, Frame 16-bit
SDO format during each communication frame starts with a specific byte called Global
Status Byte (see
Section 4.3.1: Global Status byte description for more details of bit0-
bit7). This byte is followed by an
output data byte (D0:D7).
Table 14. Global status byte
Table 15. Output data byte
SDO, Frame 8-bit
SDO Frame of 8 bits consists of GSB content only.
Figure 11. SDO Frame 8 bits
4.2.3 Operating code definition
The SPI interface features four different addressing modes which are listed in Table 16: Operating codes
.
MSB LSB
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
'$7$%\WH
/6%
WLPH
06%
*$3*36
*6%1 567% 63,(
76'
27
29/
7
&$6(
/2)) 2/2)) )6
*OREDO6WDWXV%\WH *6%
06% /6%
*$3*36
SPI functional description VNQ7003SY
30/100 DocID027886 Rev 7
Write mode
The write mode of the device allows to write the content of the input data byte into the
addressed register
(see list of registers in Table 20: RAM memory map). Incoming data
are sampled on the rising edge of the
serial clock (SCK), MSB first.
During the same sequence outgoing data are shifted out MSB first on the falling edge of the CSN pin and
subsequent bits on the falling edge of the serial clock (SCK). The first byte corresponds to the Global
Status Byte and the second to the previous content of the
addressed register.
Figure 12. SPI write operation
Read mode
The read mode of the device allows to read and to check the state of any register.
Incoming data are
sampled on the rising edge of the serial clock (SCK), MSB first.
Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on
the falling edge
of the serial clock (SCK). The first byte corresponds to the Global Status
Byte and the second to the
content of the addressed register.
In case of a read mode on an unused address, the global status/error byte on the SDO pin
is followed by
0x00h byte.
In order to avoid inconsistency between the Global Status byte and the Status register, the
Status register
contents are frozen during SPI communication.
Table 16. Operating codes
OC1 OC0 Meaning
0 0 Write operation
0 1 Read operation
1 0 Read and clear status operation
1 1 Read device information
&61
6'2
6',
%60
%60%60
/6%
/6%
/6%
/6%
&RPPDQG%\WH
*OREDO6WDWXV%\WH
ELW
'DWD
SUHYLRXVFRQWHQWRIUHJLVWHU
'DWD
ELW
$GGUHVV06%
*$3*36
DocID027886 Rev 7 31/100
VNQ7003SY SPI functional description
93
Figure 13. SPI read operation
Read and clear status command
The read and clear status operation is used to clear the content of the addressed status
register (see
Table 20: RAM memory map). A read and clear status operation with
address 0x3Fh clears all Status
registers simultaneously.
Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. The
command byte
allows to determine which register content is read and the payload bits set
to 1 into the data byte
determine the bits into the register which have to be cleared.
Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on
the falling edge
of the serial clock (SCK). The first byte corresponds to the Global Status
byte and the second to the
content of the addressed register.
In order to avoid inconsistency between the Global Status byte and the Status register, the
Status register
contents are frozen during SPI communication.
Figure 14. SPI read and clear operation
Read device information
Specific information can be read but not modified during this mode. Accessible data can be
seen in
Table 21: ROM memory map.
Incoming data are sampled on the rising edge of the serial clock (SCK), MSB first. The
command byte
allows to determine which information is read while the data byte is "don’t
care".
&61
6'2
6',
06%
%60%60/6%
/6%
/6%
&RPPDQG%\WH
*OREDO6WDWXV%\WH
ELW
'DWD
ELW
'RQ¶WFDUH
ELW
%6/ $GGUHVV06%
*$3*36
&61
6',
6'2
*OREDO6WDWXVE\WHELWV
06%/6%
'DWDE\WHELWV
06%/6%
&RPPDQGE\WH
06%$GGUHVV/6%
'DWDE\WHELWV
06%/6%
5HDGDQGFOHDUVWDWXV
RSHUDWLRQ
*$3*36
SPI functional description VNQ7003SY
32/100 DocID027886 Rev 7
Outgoing data are shifted out MSB first on the falling edge of the CSN pin and others on
the falling edge
of the serial clock (SCK). The first byte corresponds to the Global Status
byte and the second to the
content of the addressed register.
Figure 15. SPI read device information
4.2.4 Special commands
0xFF — SW-Reset: set all control registers to default
An Opcode ‘11’ (read device information) addressed at ‘111111’ forces a Software Reset of
the device.
An OpCode '11' at address '111111' with data field equal to '11111111' the SPI frame is
recognized as a
frame error and SPIE bit of GSB is set.
0xBF — clear all status registers (RAM access)
When an OpCode ‘10’ (read and clear operation) at address b’111111 is performed.
Table 18. Clear all status registers (RAM access)
Note: Reset Value = the value of the register after a power on.
Note: Default value = the default value of the register. Currently this is equivalent to the
Reset
value.
Table 17. 0xFF: SW_Reset
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
1111 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
1011 1 1 1 1
DocID027886 Rev 7 33/100
VNQ7003SY SPI functional description
93
Note: Cleared register = explicitly read and clear of the register, if it is not write
protected.
4.3 Register map
Device contains a set of RAM registers used for device configuration, the device status and
ROM
registers for device identification. Since ST-SPI is used, Global Status byte defines
the device status,
containing fault information.
4.3.1 Global Status byte description
The data shifted out on SDO during each communication starts with a specific byte called
Global Status
Byte. This one is used to inform the microcontroller about global faults which
can happen at channel-side
level (i.e. like thermal shutdown, OLOFF...) or on the SPI
interface (like Watchdog monitoring timeout
event, communication error,...). This specific
register has the following format.
Table 19. Global status byte
Bit Name Reset Content
7Global Status Bit
Not 0
The GSBN is a logically NOR combination of Bit 0 to Bit 6. This
bit can also be used as Global Status Flag without starting a
complete communication frame as it is present directly after
pulling CSN low.
6 Reset bit 1
The RSTB indicates a device reset. In case this bit is set, all
internal Control Registers are set to default and kept in that
state until the bit is cleared.
The Reset bit is automatically cleared by any valid SPI
communication
5 SPI Error 0
The SPIE is a logical OR combination of errors related to a
wrong SPI communication (SCK count and SDI stuck at errors).
The SPIE is automatically cleared by a valid SPI
communication.
4
Thermal shutdown
(OT) or
Power limitation
(PL) or
VDS
0
This bit is set in case of thermal shutdown, power limitation or in
case of high VDS (VDS) at turn-off detected on any channel.
The contribution of high VDS failure is maskable.
3TCASE 0
This bit is set if the frame temperature is greater than the
threshold and can be used as a temperature pre-warning. The
bit is cleared automatically when the frame temperature drops
below the case-temperature reset threshold (TCR).
2Latch OFF
(LOFF) 0The Device Error bit is set when one or more channels are
latched OFF
1
Open-load at off-
state or output
shorted to VCC
0This bit is set in case of open-load off-state or output shorted to
VCC condition detected on any channel
0 FailSafe 1 The bit is set in case device operates in Fail Safe Mode
SPI functional description VNQ7003SY
34/100 DocID027886 Rev 7
Note: The FFh or 00h combinations for the Global Status Byte are not possible,
exclusive
combination exists between bit 7 and bit 0 - bit 6. Consequently a FFh
or 00h combination for
the Global Status Byte must be detected by the
microcontroller as a failure (SDO stuck to
GND or to VDD or loss of SCK).
4.3.2 RAM
RAM registers can be separated according to the frequency of usage
init - register is read/ written during initialization phase (single shot action)
continuous - read/ write/ read and clear registers often accessed, applying outputs
control and
diagnostic
rare - read/ read and clear status of device registers accessed on demand (in case of
failure)
Table 20. RAM memory map
Address Name Access Content Access type Reset value
Control registers
00h CTRL Read/Write Device enable,
standby, protected init 0x00
01h DIENCR Read/Write Direct Input
Enable Control init 0x00
02h OLOFFC
RRead/Write Open-load OFF-
state Control init 0x00
03h CCR Read/Write Channel Control init 0x00
04h FASTSW
CR Read/Write Fast Switching
Control Register init 0x00
05h RESERVED
06h CSMUXC
RRead/Write CurrentSense
Multiplexer Control continuous 0x00
07h SOCR Read/Write SPI Output Control continuous 0x00
08h CHLOFF
TCR0,1 Read/Write Channel Latch
OFF Timer Control init 0x00
09h CHLOFF
TCR2,3 Read/Write Channel Latch
OFF Timer Control init 0x00
... area not used
Status registers
2Fh DIENSR Read only Direct Input Status rare 0x00
30h CHFBSR Read/Clear Channel Feedback
Status Register continuous 0x00
31h STKFLTR Read/Clear Open-load OFF-
state/Stuck to VCC rare 0x00
32h CHLOFF
SR Read only Channels latch-off
status register rare 0x00
33h VDSFSR Read/Clear VDS feedback rare 0x00
DocID027886 Rev 7 35/100
VNQ7003SY SPI functional description
93
Note: Any command (write, read or read and clear status) executed on a “not used”. RAM register,
i.e. a not assigned address, does not have any effect: there is no
change in the Global Status
byte (no communication error, no error flag). The data
written to this address (2nd byte of SDI
frame) is ignored. The data read from this
address (2nd byte of SDO frame) contains 00,
independent of what has been
written previously to this address.
Note: A write command on “don’t care” bits of an assigned RAM register address does
not have
any effect: There is no change on the Global Status byte. The data
written to the “don’t care
bits” is ignored. The content of the “don’t care bits”
remains at “0” independent of the data
written to these bits.
4.3.3 ROM
This memory is used for device identification.
34h GENSR Read/Clear Generic Status rare 0x00
... not used area
other registers
3Eh RESERVED
3Fh CONFIG Read/Write Configuration
Register, continuous 0x00
Table 21. ROM memory map
Address Name Description Access Content
00h Company
code
Indicates the code of STM
company
Read only 00H
01h Device
Family
indicates the product family Read only 01H
02h Product Code
1
Indicates the first code of
the product
Read only 56H
03h Product Code
2
Indicates the second code
of the product
Read only 48H
04h Product Code 3 Indicates the third code of
the product Read only 31H
... not used area
0Ah Version Silicon version Read only 03H
... not used area
10h SPI Mode Different Modes of the SPI
(see chapter ‘SPI Modes’) Read only 18H
11h WD Type 1 Indicates the type of
WatchDog used in the Read only 46H
12h not used area
Table 20. RAM memory map (continued)
Address Name Access Content Access type Reset value
SPI functional description VNQ7003SY
36/100 DocID027886 Rev 7
4.3.4 SPI modes
By reading out the <SPI Mode> register general information of SPI usage of the Device
Application
Registers can be read.
SPI Burst Read
The Burst Read is not implemented in this product so this bit is disabled.
SPI Data Length
The SPI Data Length value indicates the length of the SCK count monitor which is running
for all the
accesses to the Device Application Registers. In case a communication frame
with an SCK count is not
equal to the reported one, the device will lead to a SPI Error and
the data will be rejected.
The Frame Length is specified on 3 bits in SPI Mode register located in ROM part.
The 16bit SPI
communication is implemented in this product so these bits are ‘001’.
13h WD bit position
1
Indicates the address of the
register containing the WD Read only 7FH
14h WD bit position
2
Indicates the position of the
WD toggle bit Read only C0H
... not used area
20h SPI CPHA Indicates the polarity and
phase of the SPI interface Read Only 55H
3Eh GSB Options Options of GSB byte
(standard GSB definition) Read Only 00H
3Fh Advanced OP.
Code ——
Table 22. SPI Mode
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BR DL2 DL1 DL0 SPI8 0 S1 S0
Table 23. SPI Burst Read
Bit 7 Description
0 BR disabled
1 BR enabled
Table 21. ROM memory map (continued)
Address Name Description Access Content
DocID027886 Rev 7 37/100
VNQ7003SY SPI functional description
93
SPI 8 bit Frame
The SPI 8 bit Frame bit indicates if an 8 bit Frame communication is available.
The intention of an 8 bit Frame enhancement is to provide fast write access to one 8 bit
register, which is
very often rewritten with new content.
SOCR register address is predefined as addressed register during 8 bit SPI
Communications.
The SPI 8 bit Frame is implemented in this product so this bit is equal to '1'.
A short Frame with a Data Field equal to '00000000' is rejected and considered as a SPI
Frame Error
condition.
Data Consistency Check (Parity/CRC)
For some devices a Data Consistency Check is required. Therefore either a parity-check or
for very
sensitive systems a CRC may be implemented.
It is defined on 2 bits, in SPI Mode register located in ROM Part. A check is then applied on
the incoming
frame (SDI) while a calculation elaborated on one/multiple bits is done and
integrated on the outgoing
frame (SDO).
Table 24. SPI Data Length
Bit 6 Bit 5 Bit 4
Description
DL2 DL1 DL0
0 0 0 Invalid
0 0 1 16bit SPI
0 1 0 24bit SPI
...
1 1 1 64bit SPI
Table 25. SPI 8 bit Frame
Bit 3
Description
SPI8
0 8 bit Frame option not available
1 8 bit Frame option is available
Table 26. SPI Data Consistency Check
Bit 1 Bit 0 Description
S1 S0
00 not used
01 Parity used
1 0 CRC used
11 Invalid
SPI functional description VNQ7003SY
38/100 DocID027886 Rev 7
In case either the Parity or the CRC check is implemented it is always located at the end of
the
communication.
As these two checks are not implemented in the product, the two bits are equal to '00'.
4.4 Output switching slopes control
Outputs switching slopes are set by configuration register FASTSWCR.
Address 0x04h - Fast Switching Configuration Register (FASTSWCR).
The FASTSWCR allows configuring each channel in fast switching mode.
The typical switching slopes are shown in the following table:
4.5 Output control
Depending on the actual device mode, outputs can be controlled by SPI register or Direct
Input INx.
1. SPI register SOCR - in normal mode outputs can be turned ON/OFF, applying
Bit[n] = 1/0
[n]: is the related channel, n = 0 for the channel 0, and n = 3 for channel 4
Example 1:
Turning ON channel 1 and 2 with turning OFF others (without taking in consideration the
PWM or phase
shifting)
Example 2:
Turning ON channel 0 without changing other channels status
Dummy = Read SOCR
Dummy = [Dummy.OR.0x01] & 0x3F => Dummy = b00000111
Table 27. Switching slopes
FASTSWCR Channel 0,1 (V/µs) Channel 2, 3 (V/µs)
00.30 0.20
10.45 0.30
Table 28. Write SOCR 0x06
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00000 1 1 1
Data
x x x x SOCR3 SOCR2 SOCR1 SOCR0
00000 1 1 0
DocID027886 Rev 7 39/100
VNQ7003SY SPI functional description
93
2. Direct Input INx - in Fail safe, Standby and Reset modes, turn ON/OFF the outputs by
applying
high, respectively low, logic levels to dedicated pin.
While in normal mode, output can use INx pin to control output if corresponding bit in
DIENCR is at logic
high level.
Then this truth table specifies output state:
The output channels 0 and 1 can be configured to operate in BULB or LED mode using the
Channel
Control Register (CCR). If the relevant bit in CCR is 0, the output is configured in
BULB mode, if it is set to
1, the output is configured in LED mode.
Table 29. Write SOCR Dummy
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Command
OC1 OC0 Address
00 0 0 0 1 1 1
Data
x x x x SOCR3 SOCR2 SOCR1 SOCR0
00 0 0 0 1 1 1
Table 30. Truth table
DIENCRx SOCRx INx OUTPUTx state
11 X ON
10 L OFF
10 H ON
01 X ON
00 X OFF
SPI functional description VNQ7003SY
40/100 DocID027886 Rev 7
Figure 16. VNQ7003SY: 4-channel direct input block diagram
4.6 Control registers
4.6.1 Address 0x00h — Control Register (CTLR)
Table 31. CTLR — Control Register
Bit Name Access Reset Content
7 Reserved
6 Reserved
5 GOSTBY R/W 0
Go to Standby mode 1: Enter Standby mode
It is necessary to do 2 write accesses to enter standby:
1. Write UNLOCK = 1
2. Write GOSTBY = 1 and EN = 0
4 UNLOCK R/W 0 Unlock bit, has to be set before GOSTBY or EN can be set
3 Reserved
'LUHFW
,QSXW
*DWH'ULYHU
&KDQQHO
25
25
25
25
*DWH'ULYHU
&KDQQHO
*DWH'ULYHU
&KDQQHO
*DWH'ULYHU
&KDQQHO
'LUHFW
,QSXW
'LUHFW
,QSXW
'LUHFW
,QSXW
',(1&5
',(1&5
',(1&5
',(1&5
63,5HJLVWHU ',(1&5
'LUHFW,QSXW(QDEOH&RQWURO5HJLVWHU

63,5HJLVWHU ',(165
'LUHFW,QSXW6WDWXV5HJLVWHU
',(1675
',(1675
',(1675
',(1675
63,5HJLVWHU 62&5
63,2XWSXW&RQWURO5HJLVWHU
287387
287387
287387
287387
*$3*&)7
DocID027886 Rev 7 41/100
VNQ7003SY SPI functional description
93
4.6.2 Address 0x01h — Direct Input Enable Control Register (DIENCR)
Note: Please refer also to Table 30: Truth table.
2CTDTH1 R/W 0 Case Thermal Detection Threshold
These bits allow to configure the case thermal detection of
the device. Three temperature thresholds are available by
programming these two bits.
CDTH1 CTDH0 Detection temp
0 0 120 °C
0 1 130 °C
1 X 140 °C
1CTDTH0 R/W 0
0EN R/W 0
Enter Normal mode
1: Normal mode
0: Fail Safe mode
It is necessary to do 2 write accesses to enter Normal
mode:
1. Write UNLOCK = 1
2. Write EN = 1 and GOSTBY = 0
Table 32. DIENCR — Direct Input Enable Control Register
Bit Name Access Reset Content
7 Reserved
Reserved
6 Reserved
5 Reserved
4 Reserved
3 DIENCR3 R/W 0 The DIENCR enables the control of the corresponding
output channel by the direct input.
1: parallel input INx controls OUTPUTx
0: function disabled
2 DIENCR2 R/W 0
1 DIENCR1 R/W 0
0 DIENCR0 R/W 0
Table 31. CTLR — Control Register (continued)
Bit Name Access Reset Content
SPI functional description VNQ7003SY
42/100 DocID027886 Rev 7
4.6.3 Address 0x02h — Open-load OFF-State Control Register (OLOFFCR)
4.6.4 Address 0x03h — Channel Control Register (CCR)
4.6.5 Address 0x04h — Fast Switching Configuration Register (FASTSWCR)
Table 33. OLOFFCR — Open-load OFF-state control register
Bit Name Access Reset Content
7 Reserved
Reserved
6 Reserved
5 Reserved
4 Reserved
3OLOFFCR3 R/W 0 The OLOFFCR enables an internal pull-up current
generator to distinguish between the open-load
OFF-state fault and the output shorted to VCC fault.
1: Pull-up current generator enabled for OUTPUTX
0: Pull-up current generator disabled for OUTPUTX
2OLOFFCR2 R/W 0
1OLOFFCR1 R/W 0
0 CCRO R/W 0
Table 34. CCR — Channel control register
Bit Name Access Reset Content
7Reserve
Reserved
6Reserve
5Reserve
4Reserve
3Reserve
2Reserve
1 CCR1 R/W 0 The CCR selects the BULB or LED mode for the corresponding output.
1: LED mode selected for OUTPUTX
0: BULB mode selected for OUTPUTX
0 CCR0 R/W 0
Table 35. FASTSWCR — Fast Switching Configuration Register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 FASTSWCR3 R/W 0 The FASTSWCR allows to configure each channel in fast switching
mode
1: Fast Switch
0: Normal Switch
2 FASTSWCR2 R/W 0
1 FASTSWCR1 R/W 0
0 FASTSWCR0 R/W 0
DocID027886 Rev 7 43/100
VNQ7003SY SPI functional description
93
4.6.6 Address 0x06h — CurrentSense Multiplexer Control Register
(CSMUXCR)
4.6.7 Address 0x07h — SPI Output Control Register (SOCR)
Please refer also to Table 30: Truth table.
Table 36. CSMUXCR — CurrentSense Multiplexer Control Register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 MUXEN R/W 0 The MUXEN enables the CurrentSense output. Monitored channel is
selected by MUXCH bits (0..2)
2
MUXCH
R/W 0 Mux channel selection: encoding.
MUXCH = 0..3 - correspond to output channel monitor MUXCH = 4..7 -
reserved
b0 ~LSB, b3 ~MSB
1R/W0
0R/W0
Table 37. Truth table for CurrentSense Mux Control
b2 b1 b0 CurrentSense enable
000 CH0
001 CH1
010 CH2
011 CH3
Table 38. SOCR — SPI Output Control Register
Bit Name Access Reset Content
7 Reserved
Reserved
6 Reserved
5 Reserved
4 Reserved
3 SOCR3 R/W 0
The SOCR register controls the output drivers in Normal
Mode. One bit
per channel and the dx corresponds to
channel-x.
1: The corresponding output is enabled
0: The corresponding output is disabled
2 SOCR2 R/W 0
1 SOCR1 R/W 0
0 SOCR0 R/W 0
SPI functional description VNQ7003SY
44/100 DocID027886 Rev 7
4.6.8 Address 0x08h — Channel Latch OFF Timer Control Register (ch0, ch1)
(CHLOFFTCR0,1)
In Normal Mode, the output behavior in case of power limitation or thermal shutdown is
programmable, as
latch-off, time limited auto-restart (tblanking). The default mode is the latch-
off mode.
In latched off-state the fault has to be cleared to re-enable the output channel after an
overtemperature or
power limitation event through a new value written through SPI
command at CHLOFFTCRx register.
In fail-safe state, the device operates in unlimited auto-restart mode.
Example 3:
4.6.9 Address 0x09h — Channel Latch OFF Timer Control Register (ch2, ch3)
(CHLOFFTCR2,3)
Table 39. Channel configuration
Bit x3 Bit x2 Bit x1 Bit x0 Blanking time window duration
0 0 0 0 0x0 0 ms (latch-off configuration - default)
00010x1 17 ms
00100x2 34 ms
00110x3 51 ms
....
11100xE 238 ms
11110xF 255 ms
Table 40. CHLOFFTCR0,1 — Channel Latch OFF Timer Control Register (ch0, ch1)
Bit Name Access Reset Content
7 CHLOFFTCR13 R/W 0 CHLOFFTCR1x
It configures the blanking time duration in case of power
limitation or overtemperature for the corresponding output.
CHLOFFTCR10 - CHLOFFTCR13: for channel 1
6 CHLOFFTCR12 R/W 0
5 CHLOFFTCR11 R/W 0
4 CHLOFFTCR10 R/W 0
3 CHLOFFTCR03 R/W 0
CHLOFFTCR0x
It configures the blanking time duration in case of the
power limitation for the corresponding output.
CHLOFFTCR00 - CHLOFFTCR03: for channel 0
2 CHLOFFTCR02 R/W 0
1 CHLOFFTCR01 R/W 0
0 CHLOFFTCR00 R/W 0
Table 41. CHLOFFTCR2,3 — Channel Latch OFF Timer Control Register (ch2, ch3)
Bit Name Access Reset Content
7 CHLOFFTCR33 R/W 0 CHLOFFTCR3x
It configures the blanking time duration in case of the power
limitation for the corresponding output.
CHLOFFTCR30 - CHLOFFTCR33: for channel 3
6 CHLOFFTCR32 R/W 0
5 CHLOFFTCR31 R/W 0
4 CHLOFFTCR30 R/W 0
DocID027886 Rev 7 45/100
VNQ7003SY SPI functional description
93
3 CHLOFFTCR23 R/W 0 CHLOFFTCR2x
2 CHLOFFTCR22 R/W 0 It configures the blanking time duration in case of the power
limitation for the corresponding output.
CHLOFFTCR20 - CHLOFFTCR23: for channel 2
1 CHLOFFTCR21 R/W 0
0 CHLOFFTCR20 R/W 0
Table 41. CHLOFFTCR2,3 — Channel Latch OFF Timer Control Register (ch2, ch3) (continued)
Bit Name Access Reset Content
Diagnostic VNQ7003SY
46/100 DocID027886 Rev 7
5 Diagnostic
Device is capable to provide digital diagnostic information through SPI interface and
analogue diagnostic
signal using CurrentSense signal.
5.1 Analogue diagnostic
The Analogue output signal provides:
Mirror Current - output in current mode, proportional of the load current in normal
operation,
according to K-ratio
No signal - output is in High Z (tri-state)
The CSMUXCR register is used to enable the CurrentSense feature of each channel to the
CurrentSense
pin.
Each channel integrates an analog CurrentSense function which can be connected to the
CurrentSense
pin by setting the MUXEN bit (bit 3) and by setting the corresponding
channel in the MUX channel
selection bits (bits 0, 1 and 2) in the address 0x06h -
CurrentSense Multiplexer Control Register
(CSMUXCR).
5.2 Digital diagnostic
Global status byte (GSB) provides preliminary status of device every SPI communication
with device. It
informs about device actual mode (normal/ fail-safe).
DocID027886 Rev 7 47/100
VNQ7003SY Diagnostic
93
Figure 17. Diagnostic registers
By reading additional status registers, more detailed information is provided. Status
information is stored
in the status registers.
25 25
25
25
*OREDO
6WDWXV
%LW1RW
*6%1
&21),*
5HJLVWHU
PDVN
9'6FKDQQHO
:DWFK'RJ
' ' ' ' '
67.)/75
2SHQORDG2))VWDWH6WXFNWR
9&&6WDWXV5HJLVWHU
&+)%65
&KDQQHO)HHGEDFN
5HJLVWHU
9'6)65
96')HHGEDFN
5HJLVWHU
*OREDO6WDWXV%\WH
*6%
'
'
'
'
'
'
'
*6%1
899FF
&RPP(UURU63,(
&KLS5HVHW567%
7FDVH
/2))
2/2))6&WR9FF
)DLO6DIH
2/2))
6&WR9FF
27 3/
9'6
3/
27
9'6
2/2))
6&WR9FF
:DWFKGRJ
*$3*&)7
Diagnostic VNQ7003SY
48/100 DocID027886 Rev 7
5.2.1 Status registers
Note: Regarding CHLOFFSR register, Time limited auto-restart and for further
information about
the Configurable blanking time, please refer to the related
chapter.
5.3 Over load (VDS high voltage, Over Load (OVL))
During low duty cycle PWM operation on a shorted load, ON-time may be too short to allow
power
limitation or overtemperature detection. CurrentSense output is disabled. This would
make detection of
over load condition impossible. To overcome this, always when an
output channel is turned OFF, the
voltage drop on the PowerMOS (VDS) is measured. If VDS
(voltage across PowerMOS output stage)
exceeds the threshold defined by the parameter
Table 42. Status registers
Address Name Access Description
0x2F DIENSR Read
Direct Input Status register.
This register is a real time one and reads back the Input state for
each direct input. The register content is cleared if the battery voltage
is not present.
0x30 CHFBSR Read/Clear
Channel Feedback Status Register
Each bit specifies channel fault state, providing a logical "OR"
combination of VDS, PWLM, OT failure flags related to OUTPUTx.
The contribution of VDS failure can be masked through CONFIG
register settings.
0x31 STKFLTR Read/Clear
Open-load OFF-state/ Stuck to VCC Status Register
Provides information about open load or stuck to VCC, depending on
the configuration of the OLOFFCR register.
0x32 CHLOFFSR Read
Channels latch-off status register One bit per channel.
In case a channel is latch-off, this flag is set and is readable by MCU
In latched-off state the fault has to be cleared through a Write
operation of dedicated CHLOFFTCRx register to re-enable the output
channel after an overtemperature or power limitation event
0x33 VDSFSR Read/Clear
VDS feedback status register
Each bit specifies channel fault state in case of high voltage drop
across PowerMos (VDS)
0x34 GENSR Read/Clear
Generic Status register
Bit 7: Undervoltage warning flag
Bit 6: Reset warning bit. This bit is set in case of Reset event (HW
Reset or SW Reset).
Bit 5: SPI Error warning bit.
Bit 6 & Bit 5 have to be cleared through a Read & Clear command. Bit
7 is a real time bit.
DocID027886 Rev 7 49/100
VNQ7003SY Diagnostic
93
VDS_OVL, an over load condition is detected. The corresponding bit in the over load status
register
VDSFSR (address 0x33h) is set.
The same information is saved in the Channel Feedback Status Register (CHFBSR), if it is
not masked in
the CONFIG register.
Consequently, the bit 4 in the Global Status Byte and the Global Error Flag are set, if it is
not masked in
the CONFIG register.
The VDSFSR is a warning and the channel can be switched on again even if the VDSFSRx
bit is set. The
VDSFSRx bit remains unchanged until a read and clear command on
VDSFSR is sent by the SPI or until
the output is turned off the next time, when VDS is
evaluated again.
In case of low duty cycle PWM operation (i.e. 3% typical at 200 Hz in Bulb mode), VDS
might be greater
than a threshold defined by the parameter VDS_OVL even if the output is not
in over load state so that a
false warning is issued.
Please refer to the Section 4.3.1: Global Status byte description, Section 5.7: Address 0x30h — Channel
Feedback Status Register (CHFBSR) and Section 5.10: Address 0x33h — VDS Feedback Status
Register (VDSFSR).
5.4 Open-load ON-state detection
The open- load ON-state is performed by reading the CurrentSense.
5.5 Open-load OFF-state detection
If the output voltage VOUT in OFF-state of the output is greater than the open-load detection
threshold
voltage VOL, an open-load OFF-state / Stuck to VCC event is detected. The
corresponding bit in the Open-
load OFF-state / Stuck to VCC status register STKFLTR
(address 0x31h) is set. Consequently, the OLOFF
bit (bit 1) in the Global Status Register
and the Global Status Bit Not are set. To avoid false detection, the
diagnosis starts after
turn-off of a channel with an additional delay tDOLOFF
.
To distinguish between an open-load OFF-state event and a short to VCC condition, an
internal pull-up
current generator can be enabled for each channel by setting the
corresponding bit in the open-load OFF-
state control register (OLOFFCR, address 0x02h).
The activated pull-up current generators are active in Normal Mode, in Fail Safe Mode and
in Standby
Mode. In Sleep Mode 2, the current generators are switched off. The register
contents, however, are
saved also in Sleep Mode 2, consequently the current generators
are reactivated after a return to Standby
or a wakeup to Fail Safe Mode. A hardware reset
(VDD < VDD_POR_OFF) or a software reset (Command byte
= FFh) clears all register contents
and hence the current generators are switched off.
Diagnostic VNQ7003SY
50/100 DocID027886 Rev 7
Figure 18. Open-load OFF-state detection
5.6 Address 0x2Fh — DIENSR: Direct Input Status register
Table 43. STKFLTR state
With internal pull-up generator Without internal pull-up generator
Case 1: load connected “0” / no fault “0” / no fault
Case 2: no load “1” / fault “0” / no fault
Case 3: output shorted to VCC “1” / fault “1” / fault
Table 44. DIENSR — Direct Input Status register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3DIENSTR3 R 0 The DIENSTRx registers read back the status of the Direct Inputs.
1: The corresponding input is HIGH
0: The corresponding input is LOW
DIENSTR0 is the direct input status of the channel 0
2DIENSTR2 R 0
1DIENSTR1 R 0
0DIENSTR0 R 0
41*3FHJTUFS0-0''$3
0QFO-PBE0''TUBUF$POUSPM3FHJTUFS
7$$
7%4
065
(/% 7065
*$3*&)7
DocID027886 Rev 7 51/100
VNQ7003SY Diagnostic
93
5.7 Address 0x30h — Channel Feedback Status Register
(CHFBSR)
5.8 Address 0x31h — Open-load OFF-State / Stuck to VCC Status
Register (OLOFFCR)
Table 45. CHFBSR — Channel Feedback Status Register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 CHFBSR3 R/C 0 The CHFBSRx provides a logical "OR" combination of VDS, PL, OT
failure flags related to OUTPUTx.
The contributions of VDS failure flags are maskable through CONFIG
register settings.
CHFBSRx = 1: Channel OUTPUTx on failure
CHFBSRx = 0: Channel OUTPUTx no failure
The bits are refreshed continuously in ON-state and latched in OFF-
sate. The bits are not set in case of latch-off configuration and if
contribution of VDS failure flags is masked.
In order to clear the bit in OFF-state, it is necessary to send a Read-
Clear command
2 CHFBSR2 R/C 0
1 CHFBSR1 R/C 0
0 CHFBSR0 R/C 0
Table 46. STKFLTR — Open-load OFF-State / Stuck to VCC Status Register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3OLOFFSR3 R/C 0 The OLOFFCR bit is set in OFF-state after turn-off delay, the tDOLOFF is
elapsed if VOUT > VOL. It gives an information about open load or a
stuck to VCC which depends on the configuration of the OLOFFCR
register (for details refer to the functional description). The bit is
continuously refreshed in OFF-state and it is latched during ON-state.
In order to clear the bit in ON-state it is necessary to send a Read and
Clear command.
1: Open-load in OFF-state or stuck to VCC condition occurred for
OUTPUTX
0: No fault detected
2OLOFFSR2 R/C 0
1OLOFFSR1 R/C 0
0OLOFFSR0 R/C 0
Diagnostic VNQ7003SY
52/100 DocID027886 Rev 7
5.9 Address 0x32h Channels latch-off status register
(CHLOFFSR)
5.10 Address 0x33h — VDS Feedback Status Register (VDSFSR)
Table 47. CHLOFFSR — Channels latch-off status register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 CHLOFFSR3 R 0
Latch OFF flag register. One bit per channel.
In case of latch-OFF of a channel because of
power-limitation or
overtemperature, this flag is
set and readable by MCU
In latch-off state the fault has to be cleared
through a Write
operation of dedicated
CHLOFFTCRx register to re-enable the
output
channel after an overtemperature or power
limitation event.
A SW reset event clears the
content of the register
2 CHLOFFSR2 R 0
1 CHLOFFSR1 R 0
0 CHLOFFSR0 R 0
Table 48. VDSFSR — VDS Feedback Status Register
Bit Name Access Reset Content
7 Reserved 0
Reserved
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 VDSFSR3 R/C 0
VDS Feedback status. One bit per channel.
The VDSFSRx bit is set if, at the instant when the channel is
commanded off or is latched-off, the VCC - VOUT voltage drop
exceeds VDS_OVL threshold. The bit is latched until the next turn
OFF.
In order to clear the bit it is necessary to send a read and
clear
command.
The VDSFSRx bit is set to:
1: High VDS detected on OUTPUTx
0: no fault detected
Note: As the status register is not updated while CSN is low, it is
possible that
the update of the VDSFSR is delayed until the next time
it is commanded off,
if the PowerMOS is turned off during an SPI-
frame.
2 VDSFSR2 R/C 0
1 VDSFSR1 R/C 0
0 VDSFSR0 R/C 0
DocID027886 Rev 7 53/100
VNQ7003SY Diagnostic
93
5.11 Address 0x34h Generic Status Register (GENSR)
5.12 Address 0x3Fh — Configuration Register (CONFIG)
Table 49. GENSR — Generic Status Register
Bit Name Access Reset Content
7 VCCUV R 0
VCC undervoltage detection,
Active High: this bit is related to the VCC undervoltage detection and is
real time, means that it is set when VCC < VUSD and it is automatically
reset as soon as VCC > VUSD + VUSDHYST.
This bit sets the Global Error Flag of the GSB.
6RST R/C 0
Active High: this bit is high in case of chip reset (hardware reset due to a
loss of VREG supply or software reset).
This bit is set until a Read and Clear Command is performed.
5 SPIE R/C 0
Active High: this bit is set at end of Communication in case of wrong
number of clock cycles during a communication frame or invalid bus
condition or SDI stuck at High or Low conditions.
This bit is set until a Read and Clear is performed.
4 Reserved 0
3 Reserved 0
2 Reserved 0
1 Reserved 0
0 Reserved 0
Table 50. CONFIG — Configuration Register
Bit Name Access Reset Content
7 Reserved 0 Reserved
6 Reserved 0 Reserved
5 Reserved 0 Reserved
4 VDSMASK3 R/W 0
Masks the contribution of the VDS status bit in the channel feedback
status register and Global Status Byte
For channel 3
1: VDS bit is masked
0: VDS bit not masked
3 VDSMASK2 R/W 0
Masks the contribution of the VDS status bit in the channel feedback
status register and Global Status Byte
For channel 2
1: VDS bit is masked
0: VDS bit not masked
2 VDSMASK1 R/W 0
Masks the contribution of the VDS status bit in the channel feedback
status register and Global Status Byte
For channel 1
1: VDS bit is masked
0: VDS bit not masked
Diagnostic VNQ7003SY
54/100 DocID027886 Rev 7
Figure 19. Diagnostic flowchart based on GSB
1 VDSMASK0 R/W 0
Masks the contribution of the VDS status bit in the channel feedback
status register and Global Status Byte
For channel 0
1: VDS bit is masked
0: VDS bit not masked
0WDTB R/W 0
Changing the polarity of the Watchdog Toggle Bit (WDTB) within
Watchdog Timeout (WDTO linked to tWDTB parameter, seeTable 58:
Dynamic characteristics - Mode 1) keeps the device in NORMAL
operating mode
Table 50. CONFIG — Configuration Register
Bit Name Access Reset Content
3UHOLPLQDU\
GLDJQRVLV
&KHFN*OREDO6WDWXV%\WH
*6%
(UURURQ
GHGLFDWHGELW
RUELW
(QG
1RHUURUVGHWHFWHG
&KLS5HVHW
63,(UURU
2YHUWHPSHUDWXUH
3RZHUOLPLWDWLRQ
2YHU/RDG9'6
7&$6(
&KDQQHO
/DWFK2))
2SHQORDGLQ2))
VWDWHVKRUWWR9FF
)DLO6DIH
8QGHUYROWDJH
9FF
3UHOLPLQDU\GLDJQRVLVGRHVQRWGLVWLQJXLVK
ZKLFKGHYLFHFKDQQHOUHSRUWVHUURU
$GGLWLRQDOHUURUIODJIURPRWKHUVWDWXV
UHJLVWHUVDUHSURYLGHG
)URP*6%IURPRWKHU
VWDWXVUHJLVWHU
<HV
1RHUURU
1RHUURU
*$3*&)7
DocID027886 Rev 7 55/100
VNQ7003SY Diagnostic
93
Figure 20. Diagnostic flowchart for open-load off-state respectively stuck to VCC failure
6WRUH2SHQORDGLQRII
VWDWH6WRUHG2))6WDWH
(YDOXDWH
2SHQ/RDG
LQ2))VWDWH
'LVDEOHLQWHUQDO3XOOXSFXUUHQWJHQHUDWRUZULWH
WR2/2))&5FRQWUROUHJLVWHU
(QDEOHLQWHUQDO3XOOXSFXUUHQWJHQHUDWRUZULWH
WR2/2))&5FRQWUROUHJLVWHU
5HDG2SHQORDGLQRIIVWDWH67.)/75
5HDG2SHQORDGLQRIIVWDWH67.)/75
1RHUURU
(QG 2SHQORDG
6KRUWWR9FF
'HWDLOHGGLDJQRVLVLQ2))VWDWH
1RHUU
6WRUHG2))6WDWH 
67.)/75 
6WRUHG2))6WDWH!
67.)/75 
6WRUHG2))6WDWH!
67.)/75!
*$3*&)7
Diagnostic VNQ7003SY
56/100 DocID027886 Rev 7
Figure 21. Diagnostic flowchart for digital overload detection
$SJUJDBM
051-PO
TJHOBMMFEDIBOOFMT
7%40WFS-PBEPO
TJHOBMMFEDIBOOFMT
JGOPUNBTLFECZ
$0/'*(SFHJTUFS
&WBMVBUF
1PXFSMJNJUBUJPO
0WFS-PBE
5FNQFSBUVSF4UBUVT
&OE
$IBOOFM'FFECBDLSFHJTUFS
%FUBJMFEEJBHOPTJTJO0/TUBUF
/PFSSPS
&SSPSCJUT
TFU
*$3*&)7
DocID027886 Rev 7 57/100
VNQ7003SY Programmable blanking window
93
6 Programmable blanking window
Dedicated registers for each channel (CHLOFFTCR0,1 and CHLOFFTCR2,3) provide a
variable and
programmable blanking window in case of power limitation or overtemperature
event. During this period,
the corresponding channel is in auto-restart mode and the
channel is allowed to stay in power-limitation
and/or overtemperature state before latching
off, once blanking time is expired, if the cause of the power
limitation or overtemperature
event is still present. In this case the channel latches off and the related flag
in the latch-off
error register (CHLOFFSR) is set. Latch-off flag is also reported in the Global Status Byte
(see Section 4.3.1: Global Status byte description).
If during the blanking time the cause of power limitation and/or overtemperature event
disappears, the
timer stops then the rest of the blanking time will be available for another
power limitation and/or
overtemperature event. Therefore it is up to MCU to reset the timer
by refreshing the programmed value
in the dedicated register (CHLOFFTCR0,1 or
CHLOFFTCR2,3).
MCU can keep the device in auto-restart forever artificially, by refreshing the programmed
blanking time.
6.1 Timer
The 4 bit value per channel written in CHLOFFTCRx register is translated internally into an
8 bit value.
The four MSB of this 8 bit value correspond to the content of CHLOFFTCRx
register, while the four LSB
are filled with 0xF. The 8 bit value refers to an analogue timer
value.
Figure 22. Internal timer process
The granularity of the 8-bit counter is tSTEP. At each power limitation or overtemperature
event, the 8-bit
counter is decreased by the number of steps equal to the duration of power
limitation or overtemperature
event. If power limitation or overtemperature phase lasts for
less than tSTEP the counter is decreased by
one step.
After each downcount of the 8-bit register, the 4 MSB bits will be transferred to the 4 bits of
corresponding
CHLOFFTCRx register in order to refresh this register to the new value of the timer. The microcontroller
can read only the 4 MSB bits content of the register. In
consequence, the microcontroller can detect a
change of every 16 steps of downcounting.
Downcounting is stopped and the content of the 8-bit counter is frozen, when the channel is
commanded
off through Direct Input or SOCR register or when the channel goes into Fail
Safe mode.
6.2 Blanking window values
Typical values of the configurable blanking window are shown in Table 51: Time values written by MCU
and their real value in timer register.
Programmable blanking window VNQ7003SY
58/100 DocID027886 Rev 7
A peculiarity exists for the value 0x0. It configures the channel in Latch-OFF mode without
blanking time.
Consequently the channel will latch-off upon the first occurrence of power
limitation or overtemperature
event.
6.3 Limp Home mode
In Limp Home mode, the device is in unlimited auto-restart operation. The blanking time
window has no
effect on the duration of the auto-restart.
6.4 Registers
For more details refer to the SPI register and Diagnostics.
Address 08h - Channel Latch OFF Timer Control Register (CHLOFFTCR0,1)
Address 09h - Channel Latch OFF Timer Control Register (CHLOFFTCR2,3)
8 bit registers (Latch-OFF timer: R/W) are used for channel behavior configuration and the
timer value
setting. For each channel 4 bits are used.
The value is written by MCU from 0x0 to 0xF.
Latch-Off timer register access
Write command – store new value, read-back (during write command) old value
equal to the TIMER
down-counting.
Any write command will clear the Flag in the Latch-OFF-Flag register and reset
the timer.
This function will be used by MCU to clear the flag in the Latch-OFF-Flag
register, which is
READ only register.
Read command – reads currently down-counted TIMER value. If channel was latched
because of
timer expired, channel is kept latched after read command.
Address 32h - Channels latch-off status register – CHLOFFSR
Each channel has one flag. Unused channels or not existent one is reserved bit. In case of
latch-OFF of a
channel, this flag will be set and readable by MCU.
Table 51. Time values written by MCU and their real value in timer register
Bit 7 or bit 3 Bit 6 or bit 2 Bit 5 or bit 1 Bit 4 or bit 0 0xm 0xmF Typical value of blanking time
0 0 0 0 0x0 0xF Latch-OFF (ZERO)
00010x10x1F 17 ms
00100x20x2F 34 ms
00110x30x3F 51 ms
.... 0x4 0x4F 68 ms
....
11100xE0xEF 238 ms
11110xF0xFF 255 ms
DocID027886 Rev 7 59/100
VNQ7003SY Programmable blanking window
93
Example 2:
Figure 23. VNQ7003SY CHLOFFSR
Latch-OFF Flag register access
Write command – not allowed (status register)
Read command – reads current status of channels; this has no impact on latched /
un-latched
channels.
Clear command not allowed. To clear this register, a write operation in the
corresponding bit of
CHLOFFTCR is required.
Electrical specifications VNQ7003SY
60/100 DocID027886 Rev 7
7 Electrical specifications
7.1 Absolute maximum ratings
Stressing the device above the rating listed in the Table 52: Absolute maximum ratings
may cause
permanent damage to the device. These are stress ratings only and operation
of the device at these or
any other conditions above those indicated in the operating
sections of this specification is not implied.
Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
Table 52. Absolute maximum ratings
Symbol Parameter Value Unit
VREG DC SPI supply stabilization 3.6 V
-VREG Reverse DC SPI supply stabilization -0.3 V
VCCJS Maximum jump start voltage for single pulse short circuit protection 28 V
VCC DC supply voltage 38 V
-VCC Reverse DC supply voltage (without external components) -0.3 V
IOUT0,1,2,3 Maximum DC output current Internally limited A
-IOUT0,1 Reverse DC output current 9A
-IOUT2,3 20 A
ISENSE DC CurrentSense input current +10/-1 mA
EMAX0,1
Maximum switching energy (single pulse)
TDEMAG = 0.1 ms; Tjstart = 150°C 12.5 mJ
EMAX2,3
Maximum switching energy (single pulse)
TDEMAG = 0.1 ms; Tjstart = 150°C 39.6 mJ
VSDO DC SPI pin voltage VDD + 0.3 V
-VSDO Reverse DC SPI pin voltage -0.3 V
ISDI,CSN,SCK DC SPI pin current +10/-1 mA
VDD DC Digital Control supply 7 V
-VDD Reverse DC Digital Control supply -0.3 V
IDIN0,1 DC direct input current +1/-1 mA
IDIN2,3 +1/-1 mA
ESD
Electrostatic discharge (ANSI-ESDA-JEDEC-JS-001-2014)
IN0,1,2,3
–VDD
–VREG
CSN, SDI, SCK
–SDO
CurrentSense
OUT0,1,2,3
2000
2000
2000
2000
2000
2000
4000
4000
V
DocID027886 Rev 7 61/100
VNQ7003SY Electrical specifications
93
7.2 Thermal data
7.3 SPI electrical characteristics
Mode 1: 4.5 V < VDD < 5.5 V, VDD and VREG independent; -40 °C < Tj < 150 °C, unless
otherwise specified.
Mode 2: 2.7 V < VDD < 3.3 V, VDD and VREG short circuited; -40 °C < Tj < 150 °C, unless
otherwise
specified.
TjJunction operating temperature -40 to 150 °C
TSTG Storage temperature -55 to 150 °C
ILAT Latch up current ±20 mA
Table 53. Thermal data
Symbol Parameter Typ. value Unit
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-8) 3.8 °C/W
Rthj-amb Thermal resistance junction-ambient See Figure 31
Table 54. DC characteristics - Mode 1
Symbol Parameter Test conditions Min. Typ. Max. Unit
VDD pin
VDD_POR_ON
Power-on reset threshold.
Device leaves the Reset mode.
Supply of digital part is reset.
VDD increasing; VCC > VUSD 2.3 2.8 V
VDD_POR_OFF
Power-on shutdown threshold.
Device enters Reset mode.
Supply of digital part in
shutdown.
VDD decreasing; VCC >
VUSD 1.4 2.0 V
VPOR_HYST Power-on reset hysteresis 0.5 V
IDD Digital part supply current in
normal mode (@ Vdd = 5 V)
VDD = 5 V; SPI active
without frame
communication
0.6 1.0 mA
IDDstd Digital part supply current in
standby state (@ Vdd = 5 V)
VDD = 5 V;
Tj = 125 °C, INx = 0 V 520µA
SDI, SCK pins
IIL Low level Input current VSDI,SCK = 0.3 VDD A
IIH High level Input current VSDI,SCK = 0.7 VDD 10 µA
VIL Input low voltage 0.3VDD V
VIH Input high voltage 0.7VDD V
VI_HYST Input hysteresis voltage 1.0 V
Table 52. Absolute maximum ratings
Symbol Parameter Value Unit
Electrical specifications VNQ7003SY
62/100 DocID027886 Rev 7
VSDI_CL SDI clamping voltage
IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
VSCK_CL SCK clamping voltage IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
SDO pin
VOL Output low voltage
ISDO = -5 mA; CSN
low; fault condition; no
SCK 0.2VDD V
VOH Output high voltage ISDO = 5 mA; CSN low;
no fault condition; no SCK 0.8VDD V
ILO Output leakage current
VSDO = 0 V or 5 V,
CSN high; -40 °C < Tj
< 85 °C
-5 5 µA
CSN pin
IIL_CSN Low level Input current VCSN = 0.3 VDD -10 µA
IIH_CSN High level Input current VCSN = 0.7 VDD -1 µA
VIL_CSN Output low voltage 0.3VDD V
VIH_CSN Output high voltage 0.7VDD V
VHYST_CSN Input hysteresis voltage 1.0 V
VCL_CSN CSN clamping voltage IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
VSCK_CL SCK clamping voltage IIN = 1 mA 5.8 7.3 V
Table 55. DC characteristics - Mode 2
Symbol Parameter Test conditions Min. Typ. Max. Unit
VDD pin
VDD_POR_ON
Power-on reset threshold.
Device leaves the Reset mode.
Supply of digital part is reset.
VDD increasing; VCC > VUSD 2.3 2.8 V
VDD_POR_OFF
Power-on shutdown threshold.
Device enters Reset mode.
Supply of digital part in
shutdown.
VDD decreasing; VCC >
VUSD 1.4 2.0 V
VPOR_HYST Power-on reset hysteresis 0.3 V
IDD Digital part supply current in
normal mode (@ Vdd = 3 V)
VDD = 3 V; SPI active
without frame
communication
0.3 0.5 mA
Table 54. DC characteristics - Mode 1 (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DocID027886 Rev 7 63/100
VNQ7003SY Electrical specifications
93
IDDstd Digital part supply current in
standby state (@ Vdd = 3 V)
VDD = 3 V;
Tj = 125 °C, INx = 0 V 210µA
SDI, SCK pins
IIL Low level Input current VSDI,SCK = 0.3 VDD A
IIH High level Input current VSDI,SCK = 0.7 VDD 10 µA
VIL Input low voltage 0.3VDD V
VIH Input high voltage 0.7VDD V
VI_HYST Input hysteresis voltage 0.8 V
VSDI_CL SDI clamping voltage IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
VSDK_CL SCK clamping voltage IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
SDO pin
VOL Output low voltage
ISDO = -5 mA; CSN
low; fault condition; no
SCK
0.2VDD V
VOH Output high voltage ISDO = 5 mA; CSN low;
no fault condition; no SCK 0.8VDD V
ILO Output leakage current
VSDO = 0 V or VDD,
CSN high; -40 °C < Tj
< 85 °C
-5 5 µA
CSN pin
IIL_CSN Low level Input current VCSN = 0.3 VDD -10 µA
IIH_CSN High level Input current VCSN = 0.7 VDD -1 µA
VIL_CSN Output low voltage 0.3VDD V
VIH_CSN Output high voltage 0.7VDD V
VHYST_CSN Input hysteresis voltage 0.8 V
VCL_CSN CSN clamping voltage IIN = 1 mA 5.8 7.3 V
IIN = -1 mA -0.6 V
Table 56. AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 1
Symbol Parameter Test conditions Min. Typ. Max. Unit
COUT Output capacitance (SDO) VOUT = 0 V to 5 V 10 pF
CIN Input capacitance (SDI) VIN = 0 V to 5 V 10 pF
Input capacitance (other pins) VIN = 0 V to 5 V 10 pF
Table 55. DC characteristics - Mode 2 (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
64/100 DocID027886 Rev 7
Table 57. AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 2
Symbol Parameter Test conditions Min. Typ. Max. Unit
COUT Output capacitance (SDO) VOUT = 0 V to 3 V 10 pF
CIN Input capacitance (SDI) VIN = 0 V to 3 V 10 pF
Input capacitance (other pins) VIN = 0 V to 3 V 10 pF
Table 58. Dynamic characteristics - Mode 1
Symbol Parameter Test conditions Min. Typ. Max. Unit
fCClock frequency Duty cycle = 50% 4 MHz
tWHCH CSN timeout: time to release SDO bus 30 70 ms
tWDTB Watchdog toggle bit timeout 30 70 ms
tSLCH CSN low setup time 120 ns
tSHCH CSN high setup time 1200 ns
tDVCH Data in setup time 20 ns
tCHDX Data in hold time 30 ns
tCH Clock high time 115 ns
tCL Clock low time 115 ns
tCLQV Clock low to output valid COUT = 1 nF 150 ns
tQLQH Output rise time COUT = 1 nF 110 ns
tQHQL Output fall time COUT = 1 nF 110 ns
tWU Rising edge of VDD to first allowed
communication 323µs
tstdby_out Minimum time during which CSN must
be toggled low to go out of STDBY mode 30 80 150 µs
tSCLK SCK setup time before CSN rising 150 ns
tCSNQV CSN low to output valid 50 100 ns
tCSNQT CSN high to output tristate 50 100 ns
Table 59. Dynamic characteristics - Mode 2
Symbol Parameter Test conditions Min. Typ. Max. Unit
fCClock frequency Duty cycle = 50% 4 MHz
tWHCH CSN timeout: time to release SDO bus 30 70 ms
tWDTB Watchdog toggle bit timeout 30 70 ms
tSLCH CSN low setup time 120 ns
tSHCH CSN high setup time 1200 ns
tDVCH Data in setup time 20 ns
DocID027886 Rev 7 65/100
VNQ7003SY Electrical specifications
93
Figure 24. SPI dynamic characteristics
tCHDX Data in hold time 30 ns
tCH Clock high time 115 ns
tCL Clock low time 115 ns
tCLQV Clock low to output valid COUT = 1 nF 150 ns
tQLQH Output rise time COUT = 1 nF 110 ns
tQHQL Output fall time COUT = 1 nF 110 ns
tWU Rising edge of VDD to first allowed
communication 323µs
tstdby_out Minimum time during which CSN must be
toggled low to go out of STDBY mode 30 80 150 µs
tSCLK SCK setup time before CSN rising 150 ns
tCSNQV CSN low to output valid 50 100 ns
tCSNQT CSN high to output tristate 50 100 ns
Table 59. Dynamic characteristics - Mode 2 (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
6&.
W
&6149
W
6&/.
&61
6'2
6',
'DWDRXW 'DWDRXW
'DWDLQ 'DWDLQ
W
6+&+
W
&6147
W
6/&+
W
'9&+
W
&+
W
&/
W
&/49
("1($'5
6'2
ORZWRKLJK
6'2
KLJKWRORZ
W
4/4+
W
4+4/
9&&
9&&
9&&
9&&
6&.
W
ILQ
9&&
9&&
W
ULQ
Electrical specifications VNQ7003SY
66/100 DocID027886 Rev 7
7.4 Electrical characteristics
7 V < VCC < 28 V; –40 °C < Tj < 150 °C, unless otherwise specified.
Table 60. VREG pin - Mode 1
Symbol Parameter Test conditions Min. Typ. Max. Unit
VREG
Supply voltage in
normal mode VDD = 5 V; normal mode 2.5 3 3.5 V
Supply voltage in
standby VDD = 5 V; standby mode 2.5 3 3.5 V
ZREG Output impedance VDD = 5 V; IREG = 5 mA 50
IREG_Max Maximum output
current
VREG = 90% * VREG(typ);
VDD = 5 V 7mA
Table 61. Power section
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC Operating supply voltage 4 13 28 V
VUSD Undervoltage shutdown 3 4 V
VUSDhyst Undervoltage shutdown
hysteresis 0.25 V
Vclamp VCC clamp voltage ICC = 20 mA; IOUT0,1,2,3 = 0 A 38 46 52 V
Istby Supply current in sleep mode at
VCC = 13 V; Tj = 25°C
Sleep mode1; VCC = 13 V; Tj = 25
°C; VDD = 0 V 0.1 2 µA
Sleep mode2; VCC = 13 V; Tj = 25
°C; VDD = 5 V 510µA
Is(on) Supply current in ON-state
ON-state (all channels ON); VCC =
13 V; VDD = 5 V;
IOUT = 0 A
8.5 14 mA
IL(off)
OFF state output current at VCC
= 13 V, Tj = 25°C
VDD = 0 V; VCC = 13 V;
Tj = 25 °C; Vin = Vout = 0 V 00.10.5µA
OFF-state output current at VCC
= 13 V, Tj = 125°C
VDD = 0 V; VCC = 13 V;
Tj = 125 °C; Vin = Vout = 0 V 03µA
VF0,1
Output VCC diode voltage at Tj =
150°C
VCC = 13 V; IOUT = 3 A; Tj = 150 °C 0.7 V
VF2,3 VCC = 13 V; IOUT = 6 A; Tj = 150 °C 0.7 V
Table 62. Logic inputs (IN0,1,2,3 pins)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL0,1,2,3 Input low level voltage 0.9 V
IIL0,1,2,3 Low level input current VIN = 0.9 V A
VIH0,1,2,3 Input high level voltage 2.1 V
IIH0,1,2,3 High level input current VIN = 2.1 V 10 µA
DocID027886 Rev 7 67/100
VNQ7003SY Electrical specifications
93
VI(hyst)0,1,2,3 Input hysteresis voltage 0.2 V
VICL2,3 Input clamp voltage IIN = 1 mA 5.5 7.5 V
IIN = -1 mA -0.7 V
VICL0,1 Input clamp voltage IIN = 1 mA 5.5 8.2 V
IIN = -1 mA -0.7 V
Table 63. Protection
Symbol Parameter Test conditions Min. Typ. Max. Uni
DTPLIM(1)
1. Zthj-case x P = TPLIM, Zth-case is the thermal impedance, P is the Power.
Junction-case temperature
difference triggering power
limitation protection
VCC = 13 V 60 °C
DTPLIMR
Junction-case temperature
difference resetting power
limitation protection
VCC = 13 V 35 °C
TTSD Shutdown temperature VCC = 13 V 150 175 200 °C
TRReset temperature VCC = 13 V, latched off
mode disabled TRS + 1 TRS + 5 °C
TRS Thermal reset of CHFBSR fault
detection
VCC = 13 V, latched off
mode disabled 135 °C
THYST Thermal hysteresis (TTSD - TR)VCC = 13 V, latched off
mode disabled 10 °C
TCSD(2)
2. Guarantee by Design and Characterization.
Case thermal detection pre-
warning
VCC = 13 V
(see Table 31: CTLR —
Control Register)
TCSD
nom–15
TCSD
nom
TCSD
nom+15 °C
TCR (2) Case thermal detection reset VCC = 13 V TCSD
nom-15 °C
VDS_OVL VDS overload detection threshold VCC - 1.5 VCC - 1.0 VCC - 0.5 V
tBlanking Programmable blanking time -20 20 %
tON_MIN
Minimum turn-on time per
channel to avoid false VDS error
flag at VCC = 13 V
Bulb mode, ch0 and ch1 220 µs
LED mode, ch0 and ch1 150 µs
Bulb mode, ch2 and ch3 220 µs
Table 62. Logic inputs (IN0,1,2,3 pins) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
68/100 DocID027886 Rev 7
7.4.1 BULB mode
Table 64. Open-load detection (7V < VCC < 18 V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VOL Open-load OFF-state voltage
detection threshold CHx off VCC-
1.5
VCC
1.0
VCC
0.5 V
IPU Pull-up current generator for
open-load at OFF-state detection
Pull-up current generator
active, Vout = VCC - 1.0 V –1.4 –0.75 –0.4 mA
tDOLOFF Delay time after turn off to allow
open-load OFF-state detection 0.25 0.75 1.25 ms
Table 65. BULB - power section
Symbol Parameter Test conditions Min. Typ. Max. Unit
RON_ch0,1 ON-state resistance
IOUT = 3 A; Tj = 25 °C —25 m
IOUT = 3 A; Tj = 150 °C —50m
IOUT = 3 A; VCC = 4 V; Tj = 25 °C —37.5m
RON_ch2,3 ON-state resistance
IOUT = 6 A; Tj = 25 °C —7 m
IOUT = 6 A; Tj = 150 °C —14m
IOUT = 6 A; VCC = 4 V; Tj = 25 °C —10.5m
Table 66. BULB - switching (VCC = 13 V; Normal switch mode)
Symbol Parameter Test conditions Min. Typ. Max. Unit
tdon(1)
Turn-on delay time Ch0,1 From 50% CSN to 20% VOUT; RL =
4.3 25 70 115 µs
Turn-on delay time Ch2,3 From 50% CSN to 20% VOUT; RL =
2.2 50 100 150 µs
tdoff(1)
Turn-off delay time Ch0,1 From 50% CSN to 80% VOUT
; RL =
4.3 30 45 60 µs
Turn-off delay time Ch2,3 From 50% CSN to 80% VOUT; RL =
2.2 40 60 80 µs
tskew(1)
Turn-off turn-on time
Ch0,1
From 50% CSN to 50% VOUT
; RL =
4.3 -60 40 µs
Turn-off turn-on time
Ch2,3
From 50% CSN to 50% VOUT
; RL =
2.2 -85 15 µs
(dVOUT/dt)on(1)
Turn-on voltage slope
Ch0,1 VOUT = 2.6 V to 10.4 V; RL = 4.3 0.05 0.3 0.7 V/µs
Turn-on voltage slope
Ch2,3
VOUT = 2.6 V to 10.4 V;
RL = 2.2 ; normal switch mode 0.05 0.2 0.7 V/µs
DocID027886 Rev 7 69/100
VNQ7003SY Electrical specifications
93
(dVOUT/dt)off(1)
Turn-off voltage slope
Ch0,1
VOUT = 10.4 V to 2.6 V;
RL = 4.3 ; normal switch mode 0.05 0.3 0.7 V/µs
Turn-off voltage slope
Ch2,3
from VOUT = 10.4 V to 2.6 V;
RL = 2.2 ; normal switch mode 0.05 0.2 0.7 V/µs
WON
Switching losses
energy at turn-on
Ch0,1
RL = 4.3 0.3 1(2)
Switching losses
energy at turn-on Ch2,3
RL = 2.2 0.9 2(2)
WOFF
Switching losses energy
at turn-off Ch0,1 RL = 4.3 0.3 1(2)
Switching losses
energy at turn-off Ch2,3
RL = 2.2 0.9 2(2)
1. See Figure 26: Switching characteristics.
2. Parameter guaranteed by design and characterization; not subject to production test.
Table 67. BULB - switching (VCC = 13 V; Fast switch mode)
Symbol Parameter Test conditions Min. Typ. Max. Unit
tdon(1)
Turn-on delay time Ch0,1 From 50% CSN to 20% VOUT
;
RL = 4.3 25 70 115 µs
Turn-on delay time Ch2,3 From 50% CSN to 20% 50 100 150 µs
tdoff(1) Turn-off delay time Ch0,1
From 50% CSN to 80% VOUT
;
RL = 4.3 20 30 40 µs
Turn-off delay time Ch2,3 From 50% CSN to 80% 30 45 60 µs
tskew(1)
Turn-off turn-on time Ch0,1 From 50% CSN to 50% VOUT
;
RL = 4.3 -75 25 µs
Turn-off turn-on time Ch2,3 From 50% CSN to 50% -110 -10 µs
(dVOUT/dt)on(1)
Turn-on voltage slope Ch0,1 VOUT = 2.6 V to 10.4 V; RL = 4.3
0.05 0.4 0.9 V/µs
Turn-on voltage slope Ch2,3 VOUT = 2.6 V to 10.4 V; 0.05 0.3 0.7 V/µs
(dVOUT/dt)off(1)
Turn-off voltage slope Ch0,1 VOUT = 10.4 V to 2.6 V; RL = 4.3
0.05 0.4 0.9 V/µs
Turn-off voltage slope Ch2,3 from VOUT = 10.4 V to 0.05 0.35 0.7 V/µs
Table 66. BULB - switching (VCC = 13 V; Normal switch mode) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
70/100 DocID027886 Rev 7
WON
Switching losses energy at
turn-on Ch0,1 RL = 4.3 0.2 1(2) mJ
Switching losses energy at
turn-on Ch2, 3 RL = 2.2 0.8 2(2) mJ
WOFF
Switching losses energy at
turn-off Ch0,1 RL = 4.3 0.2 1(2) mJ
Switching losses energy
at turn-off Ch2,3
RL = 2.2 0.6 2(2) mJ
1. See Figure 26: Switching characteristics.
2. Parameter guaranteed by design and characterization; not subject to production test.
Table 68. BULB - protection and diagnostic
Symbol Parameter Test conditions Min. Typ. Max. Unit
IlimH_ch0,1
Short circuit current at VCC=
13 V
VCC = 13 V, VDD = 0 V,
VIN0,1 = 5 V 25 35 50 A
Short circuit current at 5 V<
VCC < 18 V(1)
1. Parameter guaranteed by design and characterization; not subjected to production test.
Vin0,1 = 5 V 50 A
IlimL_ch0,1 Short circuit current during
thermal cycling
VCC = 13 V, VDD = 0 V,
VIN0,1 = 5 V, TR < Tj < TTSD 11.5 A
IlimH_ch2,3
Short circuit current at VCC=
13 V
VCC = 13 V, VDD = 0 V,
VIN2,3 = 5 V 55 80 110 A
Short circuit current at 5 V <
VCC < 18 V(1) Vin2,3 = 5 V 110 A
IlimL_ch2,3 Short circuit current during
thermal cycling
VCC = 13 V, VDD = 0 V,
VIN2,3 = 5 V, TR < Tj < TTSD 26.5 A
VDEMAG Turn-off output voltage clamp;
25 °C < Tj < 150 °C
IOUT = 2 A; VIN0,1,2,3 = 0 V;
L = 6 mH VCC–40 VCC–44 VCC–48 V
Table 69. BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj = -40 °C to 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K1IOUT/ISENSE IOUT = 0.4 A; VSENSE = 0.5 V -30% 3700 30%
dK1/K(1) (2) CurrentSense ratio drift IOUT = 0.4 A; VSENSE = 0.5 V -20 20 %
K2IOUT/ISENSE IOUT = 2 A; VSENSE = 4 V -15% 3700 15%
dK2/K(1) (2) CurrentSense ratio drift IOUT = 2 A; VSENSE = 4 V -10 10 %
K3IOUT/ISENSE IOUT = 6 A; VSENSE = 4 V -10% 3700 10%
Table 67. BULB - switching (VCC = 13 V; Fast switch mode) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DocID027886 Rev 7 71/100
VNQ7003SY Electrical specifications
93
dK3/K(1) (2) CurrentSense ratio drift IOUT = 6 A; VSENSE = 4 V -8 8 %
ISENSE0 Analog sense current
CurrentSense disabled; VSENSE = 0 V;
IOUTx = 0 A
All channels are OFF
01µA
Current Sense Enabled; VSENSE = 0 V;
IOUTx = 0 A;
Vinx = 5 V; others Channels ON in
Bulb Mode at their load nominal
current
e.g. Ch0: VIN0 = 5 V; VIN1,2,3 = 5 V; IOUT0
= 0 A; IOUT1 = 2 A; IOUT2,3 = 6 A
015µA
CurrentSense disabled; VINx = 5 V
-1 V < VSENSE < 5 V(2) -0.5 0.5 µA
tDSENSE1H (3)
Delay response time from
rising edge of CSN pin
(turn-on of the channel)
Normal switch mode; VSENSE < 4 V,
RSENSE = 2 k;
ISENSE = 90% of ISENSEmax
(see Figure 25: CurrentSense delay
characteristics)
150 400 µs
tDSENSE1L(3)
Delay response time from
rising edge of CSN pin
(turn-off of the channel)
Normal switch m)ode; VSENSE < 4 V,
RSENSE = 2 k;
ISENSE = 10 % of ISENSEmax
(see Figure 25: CurrentSense delay
characteristics)
50 250 µs
tDSENSE2H (3) Delay response time from
CurrentSense MUX
enable
Bit3 of CSMUXCR register (MUXEN)
from 0 to 1; RSENSE = 2 k ; RL = 4.3 20 40 µs
tDSENSE2L (3) Delay response time from
CurrentSense MUX
disable
Bit3 of CSMUXCR register (MUXEN)
from 1 to 0; Rsense = 2 k; RL = 4.3 520µs
tD_XtoY CurrentSense transition
delay from ChX to ChY 100 µs
VSENSE_CL CurrentSense clamp
voltage
ISENSE = 1 mA 8910V
ISENSE = -1 mA -10 -9 -8 V
VSENSE_SAT CurrentSense saturation
voltage
VCC = 7 V; RSENSE = 2.7 k; VIN0,1 = 5
V; IOUT0,1 = 12 A;
Tj = -40°C
4.8 V
ISENSE_SAT (2) CurrentSense saturation
current
VCC = 7 V; VSENSE = 4 V; VIN0,1 = 5 V; Tj
= 150°C 4mA
IOUT_SAT_B (2) Output saturation current
in BULB mode
VCC = 7 V; VSENSE = 4 V; VIN0,1 = 5 V; Tj
= 150°C 15 A
1. All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
2. Parameter guaranteed by design and characterization; not subjected to production test.
Table 69. BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj = -40 °C to 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
72/100 DocID027886 Rev 7
3. Transition delays are measured up to ±10% of final conditions.
Table 70. BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj = -40 °C to 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K1IOUT/ISENSE IOUT = 450 mA; VSENSE = 0.5 V -50% 10100 50%
dK1/K(1) (2) CurrentSense ratio drift IOUT = 450 mA; VSENSE = 0.5 V -30 30 %
K2IOUT/ISENSE IOUT = 6 A; VSENSE = 4 V -11% 10100 11%
dK2/K2 (1) (2) CurrentSense ratio drift IOUT = 6 A; VSENSE = 4 V -9 9 %
K3IOUT/ISENSE IOUT = 18 A; VSENSE = 4 V -10% 10100 10%
dK3/K3(1) (2) CurrentSense ratio drift IOUT = 18 A; VSENSE = 4 V -8 8 %
ISENSE0 Analog sense current
CurrentSense disabled; VSENSE = 0
V; IOUTx = 0 A; All
channels are OFF
01µA
Current Sense Enabled; VSENSE =
0 V; IOUTx = 0 A;
VINx = 5 V; other channels ON in
Bulb Mode at their load nominal
current
e.g. Ch2: VIN2 = 5 V; VIN0,1,3 = 5 V;
IOUT2 = 0 A; IOUT0,1 = 2 A; IOUT3 = 6
A
015µA
CurrentSense disabled; VINx = 5 V;
- 1 V < VSENSE < 5 V (2) -0.5 0.5 µA
tDSENSE1H(3)
Delay response time
from rising edge of CSN
pin (turn-on of the
channel)
Normal switch mode; VSENSE < 4 V,
RSENSE = 2 k; ISENSE = 90 % of
ISENSEmax
(see Figure 25: CurrentSense
delay characteristics)
250 400 µs
tDSENSE1L (3)
Delay response time
from rising edge of CSN
pin (turn-off of the
channel)
Normal switch mode;
VSENSE < 4 V, RSENSE = 2 k;; ISENSE
= 10 % of ISENSEmax
(see Figure 25: CurrentSense
delay characteristics)
50 250 µs
tDSENSE2 (3)
Delay response time
from CurrentSense
MUX enable
Bit3 of CSMUXCR register
(MUXEN) from 0 to 1; RSENSE = 2
k; RL = 2.2
20 100 µs
tDSENSE2L(3)
Delay response time
from CurrentSense
MUX disable
Bit3 of CSMUXCR register
(MUXEN) from 1 to 0; RSENSE = 2
k; RL = 2.2
520µs
DocID027886 Rev 7 73/100
VNQ7003SY Electrical specifications
93
7.4.2 LED mode (Channel 0, 1)
7 V < VCC < 18 V; –40 °C < Tj < 150 °C, unless otherwise specified.
tD_XtoY CurrentSense transition
delay from ChX to ChY 100 µs
VSENSE_CL CurrentSense clamp
voltage
ISENSE = 1 mA 8910V
ISENSE = -1 mA -10 -9 -8 V
VSENSE_SAT CurrentSense
saturation voltage
VCC = 7 V; RSENSE = 2.7 k; VIN2,3 =
5 V; IOUT2,3 = 36 A; Tj = -40°C 4.8 V
ISENSE_SAT(2) CurrentSense
saturation current
VCC = 7 V; VSENSE = 4 V; VIN2,3 = 5
V; Tj = 150°C 4mA
IOUT_SAT_BULB (2) Output saturation
current in BULB mode
VCC = 7 V; VSENSE = 4 V; VIN2,3 = 5
V; Tj = 150°C 42 A
1. All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
2. Parameter guaranteed by design and characterization; not subjected to production test.
3. Transition delays are measured up to ±10% of final conditions.
Table 71. LED - power section
Symbol Parameter Test conditions Min. Typ. Max. Unit
RON Ch0,1 ON-state resistance
IOUT = 1.3 A; Tj = 25 °C —60 m
IOUT = 1.3 A; Tj = 150 °C —120m
IOUT = 1.3 A; VCC = 4 V; Tj = 25 °C —90m
Table 72. LED - switching (VCC = 13 V; Normal switch mode)
Symbol Parameter Test conditions Min. Typ. Max. Unit
tdon (1) Turn-on delay time From 50% CSN to 20% VOUT
RL = 13 20 60 100 µs
tdoff (1) Turn-off delay time From 50% CSN to 80% VOUT
RL = 13 25 40 55 µs
tskew (1) Turn-off, turn-on time From 50% CSN to 50% VOUT
;
RL = 13 -60 40 µs
(dVOUT/dt)(1) Turn-on voltage slope VOUT = 2.6 V to 10.4 V RL = 13 0.05 0.2 0.7 V/µs
(dVOUT/dt)off(1) Turn-off voltage slope From VOUT = 10.4 V to 2.6 V RL = 13 0.05 0.3 0.7 V/µs
WON Switching losses energy
at turn-on RL = 13 0.1 1(2) mJ
WOFF Switching losses energy
at turn-off RL = 13 0.1 1(2) mJ
Table 70. BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj = -40 °C to 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
74/100 DocID027886 Rev 7
1. See Figure 26: Switching characteristics.
2. Parameter guaranteed by design and characterization; not subjected to production test.
Table 73. LED - switching (VCC = 13 V; Fast switch mode)
Symbol Parameter Test conditions Min. Typ. Max. Unit
tdon(1)
1. See Figure 26: Switching characteristics.
Turn-on delay time From 50% CSN to 20% VOUT
RL = 13 20 60 100 µs
tdoff (1) Turn-off delay time From 50% CSN to 80% VOUT
RL = 13 15 25 35 µs
tskew(1) Turn-off, turn-on time From 50% CSN to 50% VOUT
RL = 13 -70 30 µs
(dVOUT/dt)on (1) Turn-on voltage slope VOUT = 2.6 V to 10.4 V RL = 13 0.05 0.6 1 V/µs
(dVOUT/dt)off(1) Turn-off voltage slope From VOUT = 10.4 V to 2.6 V RL =
13 0.05 0.6 1 V/µs
WON Switching losses energy at
turn-on RL = 13 0.06 1(2)
2. Parameter guaranteed by design and characterization; not subjected to production test.
mJ
WOFF Switching losses energy at
turn-off RL = 13 0.06 1(2) mJ
Table 74. LED - protection and diagnosis
Symbol Parameter Test conditions Min. Typ. Max Unit
IlimH_ch0,1
Short circuit current at VCC
= 13 V VCC = 13 V, VDD =0 V, VIN0,1 = 5 V 7 12 18 A
Short circuit current at 5V< VCC < 18
V(1)
1. Parameter guaranteed by design and characterization; not subjected to production test.
Vin0,1 = 5 V 18 A
IlimL_ch0,1 Short circuit current during thermal
cycling
VCC = 13 V, VDD = 0 V, VIN0,1 = 5
V, TR < Tj < TTSD 4A
Table 75. LED - CurrentSense (7 V < VCC < 18 V; Tj = -40 °C to 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K0IOUT/ISENSE IOUT = 10 mA; VSENSE= 0.5 V -60% 1400 60%
dK0/K0(1) (2) CurrentSense ratio
drift IOUT = 10 mA; VSENSE = 0.5 V -50 50 %
K1IOUT/ISENSE IOUT = 50 mA; VSENSE = 0.5 V -50% 1400 50%
dK1/K (1) (2) CurrentSense ratio
drift IOUT = 50 mA; VSENSE = 0.5 V -30 30 %
K2IOUT/ISENSE IOUT = 0.3 A VSENSE = 4 V -20% 1400 20%
DocID027886 Rev 7 75/100
VNQ7003SY Electrical specifications
93
dK2/K2(1) (2) CurrentSense ratio
drift IOUT = 0.3 A; VSENSE = 4 V -13 13 %
ISENSE0 Analog sense current
Current Sense disabled;
VSENSE = 0 V; IOUTx = 0 A; All
channels are OFF
01µA
Current Sense Enabled;
VSENSE = 0 V; IOUTx = 0 A;
VINx = 5 V; other channels ON
in Bulb Mode at their load
nominal current
e.g. Ch0: VIN0 = 5 V; VIN1,2,3 =
5 V; IOUT0 = 0 A; IOUT1 = 2 A;
IOUT2,3 = 6 A
010µA
CurrentSense disabled; VINx =
5 V (2);-0.5 0.5 µA
tDSENSE1H(3)
Delay response time
from rising edge of
CSN pin (turn-on of the
channel)
VSENSE < 4 V, RSENSE = 2 k;
ISENSE = 90 % of ISENSEmax
(see Figure 25: CurrentSense
delay characteristics)
150 250 µs
tDSENSE1L (3)
Delay response time
from rising edge of
CSN pin (turn-off of the
channel)
VSENSE < 4 V, RSENSE = 2 k;
ISENSE = 10 % of ISENSEmax
(see Figure 25: CurrentSense
delay characteristics)
50 120 µs
tDSENSE2H (3) Delay response time
from CurrentSense
MUX enable
Bit3 of CSMUXCR register
(MUXEN) from 0 to 1; RSENSE
= 2 k; RL = 13
20 100 µs
tDSENSE2L(3) Delay response
time from
CurrentSense
Bit3 of CSMUXCR register
(MUXEN) from 1 to 0; RSENSE
= 2 k ; RL = 13
520 µs
tD_XtoY
CurrentSense
transition delay from
ChX to ChY
100 µs
VSENSE_CL CurrentSense clamp
voltage
ISENSE = 1 mA 8910V
ISENSE = -1 mA -10 -9 -8 V
VSENSE_SAT CurrentSense
saturation voltage
VCC = 7 V; RSENSE = 2.7 k;
VIN0,1 = 5 V; IOUT0,1 = 4 A; Tj = -
40°C
4.8 V
ISENSE_SAT(2) CurrentSense
saturation current
VCC = 7 V; VSENSE = 4 V; VIN0,1
= 5 V; Tj = 150°C 4mA
IOUT_SAT_LED(2) Output saturation
current in LED mode
VCC = 7 V; VSENSE = 4 V; VIN0,1
= 5 V; Tj = 150°C 6A
1. All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
2. Parameter guaranteed by design and characterization; not subjected to production test.
3. Transition delays are measured up to ±10% of final conditions.
Table 75. LED - CurrentSense (7 V < VCC < 18 V; Tj = -40 °C to 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical specifications VNQ7003SY
76/100 DocID027886 Rev 7
Figure 25. CurrentSense delay characteristics
Figure 26. Switching characteristics
&61
9287[
WG21
7XUQ 21SKDVH
62&55HJLVWHU
7XUQ 2))SKDVH
62&55HJLVWHU


G9287GW
21
WG2))


G9
287GW
2))
 
WU
WI
WVNHZ WG2))WI WG21WU
*$3*36
DocID027886 Rev 7 77/100
VNQ7003SY ISO Pulse
93
8 ISO Pulse
The immunity of the device against transient electrical emissions, conducted along the
supply lines and
injected into the VCC pin, is tested in accordance with ISO7637-2:2011(E)
and ISO 16750-2:2010.
The related function performances status classification is shown in the Table 76: ISO 7637-2 - electrical
transient conduction along supply line
.
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance
to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, with external
components as shown in Figure 27: M0-7 SPI Standard connection SPI only and Figure 28: M0-7 SPI
standard, full connection.
“Status II” is defined in ISO 7637-1 Function Performed Status Classification (FPSC) as
follows: “The
function does not perform as designed during the test but returns
automatically to normal operation after
the test”.
Table 76. ISO 7637-2 - electrical transient conduction along supply line
Test Pulse
2011(E)
Test pulse severity level with
Status II functional
performance status
Minimum
number of
pulses or
test time
Burst cycle / pulse
repetition time
Pulse
duration and
pulse
generator
internal
Impedance
Level US (1)
1. Us is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), Chapter 5.6.
1(2)
2. Device goes in reset state and must be reinitialized.
III -112 V 500 pulses 0.5 s 5 s 2 ms, 10
2a(3)
3. With 38V external suppressor referred to ground (-40 °C < Tj < 150 °C).
IV +112 V 500 pulses 0.2 s 5 s 50 µs, 2
3a(2) IV -220 V 1 h 90 ms 100 ms 0.1 µs, 50
3b IV +150 V 1 h 90 ms 100 ms 0.1 µs, 50
4(4)
4. Test pulse in ISO 7637-2:2004(E).
IV -7 V 1 pulse 100 ms,
0.01
Load dump according to ISO 16750-2:2010
Test B(3) 40 V 5 pulse 1 min 400 ms, 2
Application schematics VNQ7003SY
78/100 DocID027886 Rev 7
9 Application schematics
Figure 27. M0-7 SPI Standard connection SPI only
Table 77. Component values
Reference Value comment
RVDD 330 Device logic protection
CVREG 100 nF Optional for EMI reduction- Low ESR, mount close to IC
CVCC 100 nF Battery voltage spikes filtering mounted close to IC
RCSN 2.7 kMicrocontroller protection during overvoltage and
reverse polarity
RCLK 2.7 kMicrocontroller protection during overvoltage and
reverse polarity
RSDI 2.7 kMicrocontroller protection during overvoltage and
reverse polarity
RSDO 220 Microcontroller protection during overvoltage and
reverse polarity
D1 Schottky (i.e. BAT54-Y) Microcontroller protection during overvoltage and
reverse polarity
RPROT 15K Microcontroller protection during: overvoltage, reverse
polarity and loss of GND
RSENSE 1K Sensing resistor
DocID027886 Rev 7 79/100
VNQ7003SY Application schematics
93
Figure 28. M0-7 SPI standard, full connection
Csense 470 pF Microcontroller ADC spikes filter
D2 Suppressor 20 V Negative transient protection.
D3 Suppressor 36 V Overvoltage protection.
DGND BAS21 for VDD = 5V Schottky (i.e.,
BAT54-Y) for VDD = 3.3V
Reverse polarity protection. Usage of schottky or
standard diode dependent on VDD
Table 77. Component values (continued)
Reference Value comment
Package and PCB thermal data VNQ7003SY
80/100 DocID027886 Rev 7
10 Package and PCB thermal data
10.1 PowerSSO-36 thermal data
Figure 29. PowerSSO-36 PC board
DocID027886 Rev 7 81/100
VNQ7003SY Package and PCB thermal data
93
Figure 30. Rthj-amb vs PCB copper area in open box free air conditions
Table 78. PCB properties
Dimension Value
Board finish thickness 1.6 mm +/- 10%
Board dimension 129 mm x 60 mm
Board Material FR4
Copper thickness (top and bottom layers) 0.070 mm
Copper thickness (inner layers) 0.035 mm
Thermal vias separation 1.2 mm
Thermal via diameter 0.3 mm +/- 0.08 mm
Copper thickness on vias 0.025 mm
Footprint dimension (top layer) 4.1 mm x 6.5 mm
Heatsink copper area dimension (bottom layer) Footprint, 2 cm2 or 8 cm2
Package and PCB thermal data VNQ7003SY
82/100 DocID027886 Rev 7
Figure 31. PowerSSO-36 thermal impedance junction ambient single pulse
DocID027886 Rev 7 83/100
VNQ7003SY Package and PCB thermal data
93
Equation 1
ZTH = RTH · + ZTHtp (1 - )
where = tP/T
Figure 32. Thermal fitting model for PowerSSO-36
Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the
embedded protections (power limitation or thermal cycling during thermal shutdown) are not
triggered.
Table 79. Thermal parameters
Area/island (cm2) FP 2 8 4L
R1 = R7 (°C/W) 0.9
R2 = R8 (°C/W) 2.5
R3 (°C/W) 3.4 3.4 3.4 2.6
R4 (°C/W) 6 6 6 3
R5 (°C/W) 18 14 10 2
R6 (°C/W) 30 26 15 7
R7 (°C/W) 0.9
R8 (°C/W) 2.5
R9 (°C/W) 0.7
R10 (°C/W) 1.6
Package and PCB thermal data VNQ7003SY
84/100 DocID027886 Rev 7
R11 (°C/W) 0.7
R12 (°C/W) 1.6
C1 (W·s/°C) 0.0007
C2 (W·s/°C) 0.004
C3 (W·s/°C) 0.1
C4 (W·s/°C) 0.5 0.8 0.8 1
C5 (W·s/°C) 1 2 3 10
C6 (W·s/°C) 3 5 9 18
C7 (W·s/°C) 0.0007
C8 (W·s/°C) 0.004
C9 (W·s/°C) 0.0009
C10 (W·s/°C) 0.008
C11 (W·s/°C) 0.0009
C12 (W·s/°C) 0.008
Table 79. Thermal parameters (continued)
Area/island (cm2) FP 2 8 4L
DocID027886 Rev 7 85/100
VNQ7003SY Maximum demagnetization energy (VCC = 16 V)
93
11 Maximum demagnetization energy (VCC = 16 V)
Figure 33. Maximum turn off current versus inductance - Channel 0,1
Figure 34. Maximum turn off current versus inductance - Channel 2,3
Maximum demagnetization energy (VCC = 16 V) VNQ7003SY
86/100 DocID027886 Rev 7
Note: Values are generated with RL = 0 .
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves A and B.
DocID027886 Rev 7 87/100
VNQ7003SY Package information
93
12 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK®
packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade
definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
12.1 PowerSSO-36 package information
Figure 35. PowerSSO-36 package outline
%277209,(: 7239,(:
6(&7,21 $$ 6(&7,21%%
*$3*&) 7
Package information VNQ7003SY
88/100 DocID027886 Rev 7
Table 80. PowerSSO-36 mechanical data
Ref.
Dimensions
Millimeters
Min. Typ. Max.
15° 10°
20°
A 2.15 2.45
A1 0.00 0.10
A2 2.15 2.35
b 0.18 0.32
b1 0.13 0.25 0.30
c 0.23 0.32
c1 0.20 0.20 0.30
D 10.30 BSC
D1 6.90 7.50
D2 3.65
D3 4.30
e 0.50 BSC
E 10.30 BSC
E1 7.50 BSC
E2 4.30 5.20
E3 2.30
E4 2.90
G1 1.20
G2 1.00
G3 0.80
h 0.30 0.40
L 0.55 0.70 0.85
L1 1.40 REF
L2 0.25 BSC
N36
R0.30
R1 0.20
S0.25
Tolerance of form and position
aaa 0.20
bbb 0.20
ccc 0.10
ddd 0.20
DocID027886 Rev 7 89/100
VNQ7003SY Package information
93
12.2 PowerSSO-36 packing information
Figure 36. PowerSSO-36 reel 13"
eee 0.10
fff 0.20
ggg 0.15
Table 80. PowerSSO-36 mechanical data (continued)
Ref.
Dimensions
Millimeters
Min. Typ. Max.
Package information VNQ7003SY
90/100 DocID027886 Rev 7
Figure 37. PowerSSO-36 carrier tape
Table 81. Reel dimensions
Description Value (1)
1. All dimensions are in mm.
Base quantity 1000
Bulk quantity 1000
A (max) 330
B (min) 1.5
C (± 0.2) 13
F 20.2
G (+2 / -0) 24.4
N (min) 100
T (max) 30.4
Table 82. PowerSSO-36 carrier tape dimensions
Description Value (1)
A010.90 ± 0.10
B010.80 ± 0.10
K02.75 ± 0.10
K12.45 ± 0.10
D01.50 (+0.10 / -0)
D11.60 ± 0.10
DocID027886 Rev 7 91/100
VNQ7003SY Package information
93
P04.00 ± 0.10
P112.00 ± 0.10
P22.00 ± 0.10
P10 40.00 ± 0.20
E 1.75 ± 0.10
F 11.50 ± 0.10
W 24.00 ± 0.30
T 0.30 ± 0.05
1. All dimensions are in mm
Table 82. PowerSSO-36 carrier tape dimensions (continued)
Description Value (1)
Package information VNQ7003SY
92/100 DocID027886 Rev 7
Figure 38. PowerSSO-36 schematic drawing of leader and trailer tape
12.3 PowerSSO-36 marking information
Figure 39. PowerSSO-36 marking information
Note: Engineering Samples: Parts marked as “&” are not yet qualified and therefore not
approved
for use in production. ST is not responsible for any consequences
resulting from such use. In
no event will ST be liable for the customer using any of
these engineering samples in
production. ST’s Quality department must be
contacted prior to any decision to use these
engineering samples to run a
qualification activity. Commercial Samples: fully qualified parts
from ST standard production with no
usage restrictions.
("1($'5

4QFDJBMGVODUJPOEJHJU
&OHJOFFSJOHTBNQMF
CMBOL$PNNFSDJBMTBNQMF
1PXFS4405017*&8
OPUJOTDBMF
.BSLJOHBSFB
DocID027886 Rev 7 93/100
VNQ7003SY Order codes
93
13 Order codes
Table 83. Device summary
Package Order codes
Tube Tape and reel
PowerSSO-36 VNQ7003SY VNQ7003SYTR
Revision history VNQ7003SY
94/100 DocID027886 Rev 7
14 Revision history
Table 84. Document revision history
Date Revision Description of changes
01-Jul-2015 1 Initial release.
25-Nov-2015 2
Updated Chapter 2: Functional description Updated Chapter 3: Protections
Updated Chapter 6: Programmable blanking window Table 53: Absolute
maximum ratings:
-VCCJS: added parameter
-IDIN0,1, IDIN2,3: updated values
Table 55: DC characteristics - Mode 1:
-VDD_POR_ON: updated value
-IDD, IDDstd: updated test conditions Table 56: DC characteristics - Mode 2:
-IDD, IDDstd: updated test conditions
Table 58: AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 2:
-COUT, CIN: updated test conditions
Table 60: Dynamic characteristics - Mode 2:
-tWDTB: added parameter Table 62: Power section:
-IS: updated test conditions
Table 63: Logic inputs (IN0,1,2,3 pins):
-VICL0,1: updated test conditions and values
-tSTEP: removed parameter
Updated Table 67: BULB - switching (VCC = 13 V; Normal switch mode)
Added Table 68: BULB - switching (VCC = 13 V; Fast switch mode) Table 69:
BULB - protection and diagnostic
-IlimH_ch0,1, IlimH_ch2,3: Updated values
Table 70: BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj
= - 40 °C to 150 °C)
-K0, dK0/K0, ISENSE_DIS: deleted parameter
-K1, dK1/K1, K2, dK2/K2, K3, dK3/K3, ISENSE0: updated test conditions and
values
-tDSENSE2H, tDSENSE2L, tD_XtoY: added parameters
Table 71: BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj
= - 40 °C to 150 °C)
-K0, dK0/K0, ISENSE_DIS: deleted parameter
-K1, dK1/K1, K2, dK2/K2, K3, dK3/K3, ISENSE0: updated test conditions and
values
-tDSENSE2H, tDSENSE2L, tD_XtoY: added parameters
Table 72: LED - power section - RON Ch0,1: updated test conditions
Updated Table 73: LED - switching (VCC = 13 V; Normal switch mode)
DocID027886 Rev 7 95/100
VNQ7003SY Revision history
99
25-Nov-2015
(cont.) 2
Added Table 74: LED - switching (VCC = 13 V; Fast switch mode) Table 74:
LED - switching (VCC = 13 V; Fast switch mode)
-K0, dK0/K0, K1, dK1/K1, K2, dK2/K2, ISENSE0: updated test conditions and
values
-K3, dK3/K3, ISENSE_DIS: deleted parameter
-tDSENSE2H, tDSENSE2L, tD_XtoY: added parameters
11-Oct-2016 3
Minor text edits and formatting changes throughout document.
Updated Table 1: "Pin functionality description" with Pin 13 information
Updated Table 53: "Absolute maximum ratings" -VCC parameter description
Removed Table 56: "DC characteristics - Mode 2" VDD Pin footnote Updated
Section 7.4.1: "BULB mode" WON and WOFF values
Updated Table 70: "BULB - CurrentSense (VCC = 7 V to 18 V, channel 0,1; Tj
= -40 °C to 150 °C)" and Table 71: "BULB - CurrentSense (VCC = 7 V to 18 V,
channel 2,3; Tj = -40 °C to 150
°C)" and Table 76: "LED - CurrentSense (VCC = 7 V to 18 V; Tj = - 40 °C to
150 °C)":
-ISENSE test conditions
-tDSENSE2H and tDSENSE2L test conditions and values
-VSENSE_SAT test conditions
Updated Table 77: "Component values"
Table 84. Document revision history (continued)
Date Revision Description of changes
Revision history VNQ7003SY
96/100 DocID027886 Rev 7
04-May-2017 4
Minor text changes throughout document.
Figure 1: "Block diagram": Replaced image
Table 1: "Pin functionality description": Modified Function descriptions of the
SDO, VDD and CurrentSense pins
Section 2.1: "Device interfaces": Changed VDD option from 3.3 V to 3 V
Table 3: "Frame 1: read (ROM) 0x3FH 0x--": Added footnote
Section 3.2: "Junction overtemperature (OT)": Added reference to Limp Home
Mode Updated the Global Status Byte that is cleared to bit 2 for Latched OFF
operation
Section 3.3: "Power limitation (PL)": Added reference to Limp Home Mode
Updated the Global Status Byte that is cleared to bit 2 for Latched OFF operation
Section 4.2: "SPI protocol": Restructured subsections to separately describe the
SDI/SDO 8-bit and 16-bit formats.
Table 20: "RAM memory map": Updated entries for memory addresses 05h, 08h,
09h and 3Eh
Table 21: "ROM memory map": Updated Content column entry for memory
address 0Ah
Figure 16: "VNQ7003SY: 4-channel direct input block diagram": Replaced image
Table 31: "CTLR - Control Register": Added GOSTBY value required to enter
Normal mode for bit 0.
Table 32: "DIENCR - Direct Input Enable Control Register": Updated content
column entry for bits 7-4
Removed Section: Address 0x05h - Test Register (TEST)
Table 36: "CSMUXCR - CurrentSense Multiplexer Control Register": Updated
content column entry for bits 7-4
Table 38: "SOCR - SPI Output Control Register": Updated content column entry
for bits 3-0
Section 4.6.8: "Address 0x08h - Channel Latch OFF Timer Control Register
(ch0, ch1) (CHLOFFTCR0,1)": Updated section title (changed CHLOFFTCR1
register name to CHLOFFTCR0,1)
Table 39: "Channel configuration": Updated table title, table headings and
blanking time window durations
Table 40: "CHLOFFTCR0,1 - Channel Latch OFF Timer Control Register (ch0,
ch1)": Modified all register names and updated content column entries
accordingly
Table 84. Document revision history (continued)
Date Revision Description of changes
DocID027886 Rev 7 97/100
VNQ7003SY Revision history
99
04-May-2017
(cont.) 4
Section 4.6.9: "Address 0x09h - Channel Latch OFF Timer Control Register
(ch2, ch3) (CHLOFFTCR2,3)": Updated section title (changed CHLOFFTCR2
register name to CHLOFFTCR2,3)
Table 41: "CHLOFFTCR2,3 - Channel Latch OFF Timer Control Register (ch2,
ch3)": Modified register names for bits 7-4 and updated content column entries
accordingly
Section 5.8: "Address 0x31h - Open-load OFF-State / Stuck to VCC Status
Register (OLOFFCR )": Updated section title (changed STKFLTR register name
to OLOFFCR)
Table 46: "STKFLTR - Open-load OFF-State / Stuck to VCC Status Register":
Changed bit name from STKSRX to OLOFFCR
Table 47: "CHLOFFSR - Channels latch-off status register": Updated bit names
for bits 3-0
Table 50: "CONFIG - Configuration Register": Updated Reset column values for
bits 7-5
Section 6: "Programmable blanking window": Updated register names (from
CHLOFFTCR1 to CHLOFFTCR0,1 and from CHLOFFTCR2 to
CHLOFFTCR2,3)
Table 51: "Time values written by MCU and their real value in timer register":
Updated all Typical value of blanking time values
Section 6.4: "Registers":
-Updated register names (from CHLOFFTCR1 to CHLOFFTCR0,1 and from
CHLOFFTCR2 to CHLOFFTCR2,3)
-Added "Clear command" description to the subsection: Latch-OFF Flag register
access
Table 52: "Absolute maximum ratings": Updated VREG parameter value from 3 V
to 3.6 V
Table 54: "DC characteristics - Mode 1":
-Updated min, typ and max values for VDD_POR_ON and VDD_POR_OFF
-Updated max values for parameters VSDI_CL (IIN = 1 mA), VSCK_CL (IIN = 1
mA) and VCL_CSN (IIN = 1 mA)
Table 55: "DC characteristics - Mode 2": Updated max values for parameters
VSDI_CL (IIN = 1 mA), VSDK_CL (IIN = 1 mA) and VCL_CSN (IIN = 1 mA)
Table 57: "AC characteristics (SDI, SCK, CSN, SDO pins) - Mode 2": Updated
max values for parameters COUT and CIN
Table 58: "Dynamic characteristics - Mode 1": Updated min, typ and max values
for parameter tstdby_out
Table 59: "Dynamic characteristics - Mode 2": Inserted min, typ or max values for
all parameters except tSCLK, tCSNQV and tCSNQT
Table 67: "BULB - switching (VCC = 13 V; Fast switch mode)": Updated min, typ
and/or max values for all parameters
Table 84. Document revision history (continued)
Date Revision Description of changes
Revision history VNQ7003SY
98/100 DocID027886 Rev 7
04-May-2017
(cont.) 4
Table 60: "VREG pin - Mode 1":
-Inserted max value for VREG (Supply voltage in standby mode)
-Updated output impedance symbol to ZREG Updated test conditions for ZREG
and IREG_Max
-Updated typ value for IREG_Max
Table 61: "Power section":
-Changed parameter symbol IS to Istby
-Added parameter Is(on) - Supply current in ON-state
Table 62: "Logic inputs (IN0,1,2,3 pins)": Changed symbol VDIN to VIN in Test
condition column
Table 63: "Protection": Updated min and max values for parameters VDS_OVL,
tBlanking and tON_MIN
Table 64: "Open-load detection (7V < VCC < 18 V)": Updated min, typ and max
values for parameters IPU and tDOLOFF
Table 66: "BULB - switching (VCC = 13 V; Normal switch mode)":
-Updated min, typ and max values for parameters tdon, tdoff, tskew,
(dVOUT/dt)off and WOFF
-Changed WOFF to Ch2,3 in Parameter column of WON
Table 68: "BULB - protection and diagnostic": Updated Parameters and Test
conditions for VDEMAG
Table 69: "BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj = -40 °C to
150 °C)":
-Updated min values for parameters VSENSE_SAT and IOUT_SAT_BULB
-Updated typ values for parameters K1, K2 and K3
-Updated max values for parameters ISENSE0 (current sense enabled),
tDSENSE1H, tDSENSE2H and tD_XtoY
-Changed Tj to -40 °C in Parameter column of VSENSE_SAT
Table 70: "BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj = -40 °C to
150 °C)":
-Updated min values for parameters VSENSE_SAT and IOUT_SAT_BULB
-Updated typ values for parameters K1, K2, K3, tDSENSE1H and tDSENSE2H
-Updated max values for parameters tDSENSE1H, tDSENSE2H and
tDSENSE2L
-Changed Tj to -40 °C in Parameter column of VSENSE_SAT
Table 72: "LED - switching (VCC = 13 V; Normal switch mode)": Updated min,
typ and/or max values for all parameters
Table 84. Document revision history (continued)
Date Revision Description of changes
DocID027886 Rev 7 99/100
VNQ7003SY Revision history
99
04-May-2017
(cont.) 4
Table 73: "LED - switching (VCC = 13 V; Fast switch mode)": Updated min, typ
and/or max values for all parameters
Table 75: "LED - CurrentSense (7 V < VCC < 18 V; Tj = -40 °C to 150 °C)":
-Updated min value for parameter IOUT_SAT_LED
-Updated typ values for parameters K0, K1, K2 and tDSENSE2H
-Updated max values for parameters ISENSE0, tDSENSE2H and tDSENSE2L
-Changed Tj to -40 °C in Parameter column of VSENSE_SAT Figure 25:
"CurrentSense delay characteristics": Replaced image Figure 26: "Switching
characteristics": Replaced image
Figure 27: "M0-7 SPI Standard connection SPI only": Replaced image
Figure 28: "M0-7 SPI standard, full connection": Replaced image
Section 10.3: "PowerSSO-36 marking information": Updated information
regarding the use of engineering samples
13-Dec-2017 5
- Updated Table 52: Absolute maximum ratings , added EMAX0,1 and EMAX2,3
values.
- Updated Table 53: Thermal data
- Updated Table 54: DC characteristics - Mode 1
- Updated Table 63: Protection
- Updated Table 65: BULB - power section
- Updated Table 67: BULB - switching (VCC = 13 V; Fast switch mode)
- Updated Table 69: BULB - CurrentSense (7 V < VCC < 18 V, channel 0,1; Tj = -
40 °C to 150 °C)
- Updated Table 70: BULB - CurrentSense (7 V < VCC < 18 V, channel 2,3; Tj = -
40 °C to 150 °C)
- Updated Table 73: LED - switching (VCC = 13 V; Fast switch mode)
- Updated Table 75: LED - CurrentSense (7 V < VCC < 18 V; Tj = -40 °C to 150
°C)
- Updated Figure 26: Switching characteristics
- Updated Table 76: ISO 7637-2 - electrical transient conduction along supply
line
Added Section 10: Package and PCB thermal data
Added Section 11: Maximum demagnetization energy (VCC = 16 V)
15-Jan-2018 6 Updated Table 54: DC characteristics - Mode 1.
04-Apr-2018 7
In Table 67: BULB - switching (VCC = 13 V; Fast switch mode):
updated parameter description of “tskew” symbol from “Turn-off turn-on time” in
“Turn-off turn-on time Ch2,3
updated parameter description of “(dVOUT/dt)on” symbol from “Turn-on voltage
slope” in “Turn-on voltage slope Ch2,3
updated parameter description of “(dVOUT/dt)off” symbol from “Turn-off voltage
slope” in “Turn-off voltage slope Ch2,3
updated parameter description of “WON” symbol from “Switching losses
energy” in “Switching losses energy at turn-on Ch2,3
updated parameter description of “WOFF” symbol from “Switching losses
energy” in “Switching losses energy at turn-off Ch2,3
Updated title of Table 72: LED - switching (VCC = 13 V; Normal switch mode)
Table 84. Document revision history (continued)
Date Revision Description of changes
VNQ7003SY
100/100 DocID027886 Rev 7
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved