©2002 Fairchild Semiconductor Corporation
November 2002
FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
FDB060AN08A0 / FDP060AN 08A0
N-Channel PowerTrench® MOSFET
75V, 80A, 6.0m
Features
•r
DS(ON) = 4.8m (Typ .), VGS = 10 V, I D = 80 A
•Q
g(tot) = 73nC (Typ.), VGS = 10V
Low Miller Charge
•Low Q
RR Body Diode
UIS Capability (Single Pulse and Repetitive Pulse)
Qualified to AEC Q101
Formerly developmental type 82680
Applications
42V Automotive Load C ont rol
Starter / Alternator Systems
Electr oni c Power Steering System s
E le c tr on ic Valve Trai n Sys t e m s
DC-DC converters and Off-line UP S
Distribut ed Po wer Architectures and VRMs
Pri ma ry Switch fo r 24V and 48 V syste ms
MOSFET Maximu m Ratings TC = 25°C unles s othe rwise no ted
Thermal Characteristics
Thi s produ ct has bee n desi gned to mee t the ex treme te st condi ti ons an d environme nt de mande d by the au tomot ive indust ry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, a ssembled and test ed under ISO9000 and QS9000 quality systems
certification.
Symbol Parameter Ratings Units
VDSS Drain to Sourc e Voltage 75 V
VGS Gate to Sourc e Vo lta ge ±20 V
ID
Drain Cur rent 80 A
Continuous (TC < 127oC, VGS = 1 0 V)
Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 43oC/W) 16 A
Pulsed Figure 4 A
EAS Single Pulse Av alanche Energ y (Note 1) 350 mJ
PDPow er dissipation 255 W
Derate above 25oC1.7W/
oC
TJ, TSTG Operating and Storage Temperature -55 to 175 oC
RθJC Thermal Resistance Junction to Case TO-220,TO-263 0.58 oC/W
RθJA Thermal R esistance Junction to Ambient TO- 220 ,TO-2 63 (Note 2) 62 oC/W
RθJA Thermal R esistance Ju ncti on t o Ambien t TO-263, 1in2 co pper pad area 43 oC/W
D
G
S
TO-263AB
FDB SERIES
GATE
SOURCE DRAIN
(FLANGE)
TO-220AB
FDP SERIES
DRAIN
DRAIN
GATE
SOURCE
(FLANGE)
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Package Marking and Ordering Information
Electrical Characteristics TC = 25°C unless otherwise noted
Off Characteri stics
On Characteristics
Dynamic Characteristic s
Switching Characteri stics (VGS = 10V )
Drain-Source Diode Character istics
Notes:
1: Starting TJ = 25°C, L = 109µH, IAS = 80A.
2: Pulse width = 100s
Device Marking Device Package Reel Size Tape Width Quantity
FDB060AN08A0 FDB060AN08A0 T O-263AB 330mm 24mm 800 units
FDP060AN08A0 FDP 060AN08A0 TO-220AB Tube N/A 50 units
Symbol Paramet er Tes t Conditions Min Typ Max Units
BVDSS Drain to S ou rc e B rea k dow n Vo lt ag e I D = 250µA, VGS = 0V 75 - - V
IDSS Zero Gate Voltage Drain Current VDS = 60V - - 1 µA
VGS = 0V TC = 150oC- -250
IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
rDS(ON) D r ai n to S ou r c e On Re si stan ce
ID = 80A, VGS = 10V - 0.0048 0.006
ID = 40A, VGS = 6V - 0.0066 0.010
ID = 80A, VGS = 10V,
TJ = 1 75 oC- 0.010 0.013
CISS Input Capacitance VDS = 25V, VGS = 0 V,
f = 1MHz
- 5150 - pF
COSS Out put Capacitance - 800 - pF
CRSS Reverse Transfer Capacitance - 230 - pF
Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10 V
VDD = 40V
ID = 80A
Ig = 1.0mA
73 95 nC
Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 10 13 nC
Qgs Ga te to Sourc e Gate Charg e - 29 - nC
Qgs2 Gate Charge Threshold to Plateau - 19 - nC
Qgd Gate to Drain “Miller” Charge - 16 - nC
tON Turn-On Time
VDD = 40V, ID = 80 A
VGS = 10V, RGS = 3.9
--147ns
td(ON) Turn-On Dela y Time - 19 - ns
trRise Time - 79 - ns
td(OFF) Turn-Off Delay Time - 37 - ns
tfFall Time - 38 - ns
tOFF Turn-Off Time - - 113 ns
VSD Source to Drain Diode Voltage ISD = 80 A - - 1.2 5 V
ISD = 40A - - 1.0 V
trr Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs- -37ns
QRR Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs- -38nC
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Typical Characteristics TC = 25°C un less otherwis e noted
Figure 1. Normalized Power Dissipati on vs
Ambient Temperature Figure 2. Maxi mum Continuous Drai n Current vs
Case Temperature
Figure 3. Normalized Maximum Transient Thermal Impedance
Figure 4. Peak Current Capability
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150 0
25
50
75
100
125
150
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
CURRENT LIMITED
BY PACKAGE
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
0.01
2
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZED
THERMAL IMPEDANCE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
0.5
0.2
0.1
0.05
0.01
0.02
DUTY CYCLE - DESCENDING ORDER
SINGLE PULSE
100
1000
2000
70
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
10-5 10-4 10-3 10-2 10-1 100101
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 10V
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Figure 5. Forward Bi as Safe Oper ati ng Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
Figure 7. Transfer Charact eristic s Figure 8. Saturation Chara cteristics
Figur e 9 . Dr ain t o So urce On Resis tance v s Dr ain
Current Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
Typical Characteristics TC = 25°C un less otherwis e noted
0.1
1
10
100
1000
110100
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
10µs
1ms
DC
100µs
10ms
1
10
100
0.01 0.1 1 10 100
500
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
START I NG TJ = 150oC
tAV = (L)( IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R )/(1.3*RATED BVDSS - VDD) +1]
0
25
50
75
100
125
150
175
3.5 4.0 4.5 5.0 5.5 6.0
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC TJ = -55oC
0
25
50
75
100
125
150
175
0 0.5 1.0 1.5 2.0
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 6V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 5V
TC = 25oC
VGS = 10V VGS = 7V
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
0 20406080
ID, DRAIN CURRENT (A)
VGS = 6V
VGS = 10V
DRAIN TO SOURCE ON RESISTANCE(m)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.5
1.0
1.5
2.0
2.5
-80 -40 0 40 80 120 160 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID = 80A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Figur e 11. Norma lized Gat e Threshold Voltage vs
Junction Temperature Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Figure 13. Capacitance vs Drain to Source
Voltage Figure 1 4. Gate Charge Waveforms for Constant
Gate Current
Typical Characteristics TC = 25°C un less otherwis e noted
0.4
0.6
0.8
1.0
1.2
-80 -40 0 40 80 120 160 200
VGS = VDS, ID = 250µA
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDOWN VOLTAGE
100
1000
0.1 1 10
7000
75
C, CAPACITANCE (pF)
VDS, DRAIN TO SOURCE VOLTAG E ( V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
0
2
4
6
8
10
0 20406080
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
VDD = 40V
ID = 80A
ID = 16A
WAVEFORMS IN
DESCENDING ORDER:
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Test Circuits and Waveforms
Figure 15. Unclamped Energy Test Circuit Figure 1 6. Unclamped Energy Waveform s
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS +
-
VDS
VDD
DUT
Ig(REF)
L
VDD
Qg(TH)
VGS = 2V
Qgs2
Qg(TOT)
VGS = 10V
VDS VGS
Ig(REF)
0
0
Qgs Qgd
VGS
RL
RGS
DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%50%
10% PULSE WI DT H
VGS
0
0
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
s erves as the basis for establishing the rating of the part.
In using surface mount devices such as the TO-263
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
c omple x and influenced by many factors:
1. Mou nti ng pad area onto which t he device i s at tach ed and
wh ethe r the re is copp er on on e si de or b oth si de s of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of exte rnal heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transien t thermal respon se of the part,
the boa rd and the envir onment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
position ed FR -4 board with 1 oz c opp er af t er 100 0 sec on ds
of stea dy st ate powe r w ith n o air flow . Th is gr aph prov ides
the ne cessa ry i nformation for calc ulat ion of th e st eady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in in ches square and equation 3 is for area in centimet ers
square. The area, in square inches or square centimeters is
the top copp er area including the ga te and source pads.
(EQ. 1)
PDM
TJM TA
()
RθJA
-----------------------------=
Area in Inches Squared
(EQ. 2)
RθJA 26.51 19.84
0.262 Area+()
-------------------------------------+
=
(EQ. 3)
RθJA 26.51 128
1.69 Area+()
----------------------------------+
=
Area in Centimeters Squared
Figure 21. Thermal Resistance vs Mounting
Pad Area
20
40
60
80
1100.1
RθJA = 26.51+ 19.84/(0.262+Area) EQ.2
RθJA (oC/W)
AREA, TOP COPPER AREA in2 (cm2)
(0.645) (6.45) (64.5)
RθJA = 26.51+ 128/(1.69+Area) EQ.3
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
PSPICE Electr ical Model
.SU BC K T F DP060AN08A0 2 1 3 ; rev October 200 2
Ca 1 2 8 2. 5e-9
Cb 1 5 14 2. 1e-9
Cin 6 8 4.7e-9
D bo dy 7 5 Db ody M OD
Dbreak 5 11 D break MOD
Dplc ap 10 5 Dplcap M O D
Ebreak 11 7 17 18 82.1
Ed s 14 8 5 8 1
Eg s 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtem p 20 6 18 22 1
It 8 17 1
Lgate 1 9 5. 3e- 9
Ldrai n 2 5 1.0e -9
Ls o urce 3 7 5e - 9
RLgate 1 9 53
R Ld rain 2 5 10
RLsourc e 3 7 50
Mm e d 16 6 8 8 Mm edMOD
Mstro 16 6 8 8 MstroM OD
Mwe ak 16 21 8 8 MweakMO D
Rbreak 17 18 Rbreak M O D 1
Rdrain 50 16 RdrainMOD 9e-4
Rgate 9 20 1.4
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 3e-3
Rvthre s 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1B M OD
S2a 6 15 14 13 S2A M OD
S2b 13 15 14 13 S2B M OD
Vbat 22 19 DC 1
ESL C 51 50 VALUE = {(V(5,5 1)/AB S(V(5, 51)))*(PWR(V (5,51 )/ (1e-6*350),5))}
.MODEL DbodyMOD D (IS=2E-11 N=1.04 RS=1.76e-3 TRS1=2.7e-3 TRS2=1e-6
+ CJO=3. 2e-9 M= 5.6e-1 TT= 3e-10 XT I=3.9)
.MO DE L DbreakMOD D (RS=3e-1 TRS 1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=1.56e-9 IS=1e-30 N=10 M=0.53)
.MODEL MmedMOD NMOS (VTO=3.6 KP=6 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.4)
.MO DE L Mst roMOD NMOS (VTO=4.22 K P = 220 IS=1e -30 N=10 T OX = 1 L=1u W=1u )
.MODEL MweakMOD NMOS (VTO=3 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14 RS=0.1)
.MODEL RbreakMOD RES (TC1=9.4e-4 TC2=-9e-7)
.MO DE L RdrainMOD RES (TC1=2. 2e-2 TC2=6e -5)
.MODEL RSLCMOD RES (TC1=2e-3 TC2=1e-5)
.MO DE L Rsou rceMOD RES (TC1=1e-3 TC 2=1e-6 )
.MO DEL Rvthre sM OD RE S (T C1=-6e-3 TC2=-1 .6e-5 )
.MO DE L Rvte m pM OD RE S (T C1=-2. 4e-3 TC2=1e -6)
.M ODEL S1AMOD VSWITC H (RON= 1e- 5 ROFF =0. 1 VON=- 8 VOF F=-5 )
.M ODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF =0. 1 VON=- 5 VOF F=-8 )
.M ODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 4 VOFF =-3 .5 )
.M ODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF =0. 1 VON=- 3. 5 VOF F=-4 )
.ENDS
Note: For further discussion of the PSPICE model, consult A N ew PSPICE Sub-Circuit for the Power MOSFET Featuring G lobal
Temperature Options; IE EE P ower E le ct ronics Spec i a l i st Conference Records, 1991, wri tten by William J. Hepp and C. F rank
Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
SABER Electrical Model
rev October 2002
tem pl ate FDP060AN08A 0 n2,n1 ,n 3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=2e-11,nl=1.04,rs=1.76e-3,trs1=2.7e-3,trs2=1e-6,cjo=3.2e-9,m=5.6e-1,tt=3e-10,xti=3.9)
dp.. m odel dbreakmo d = (rs=3e -1, trs1=1e-3 ,t rs 2=-8. 9e-6)
dp..model dplcapmod = (cjo=1.56e-9,isl=10e-30,nl=10,m=0.53)
m..model mmedmod = (type=_n,vto=3.6,kp=6,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=4.22,kp=220,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=3,kp=0.03,is=1e-30, tox=1,rs=0.1)
sw_v cs p..mo del s1amod = (ron= 1e-5,roff=0. 1,von=-8,vof f=-5 )
sw_v cs p..mo del s1bmod = (ron= 1e-5,roff=0. 1,von=-5,vof f=-8 )
sw_v cs p..mo del s2amod = (ron= 1e-5,roff=0. 1,von=-4,vof f=-3 .5)
sw_v cs p..mo del s2bmod = (ron= 1e-5,roff=0. 1,von=-3.5,voff =-4)
c . ca n1 2 n8 = 2. 5e- 9
c.cb n15 n14 = 2. 1e-9
c.c in n6 n8 = 4.7e -9
dp.dbody n7 n5 = model =dbody m od
dp.dbrea k n5 n11 = model=dbr eakmod
dp.dplca p n10 n5 = model =dplcapmod
spe. ebreak n11 n7 n17 n1 8 = 82.1
spe. eds n14 n8 n5 n8 = 1
spe. egs n13 n8 n6 n8 = 1
spe. esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe. evtemp n20 n6 n18 n2 2 = 1
i.it n8 n17 = 1
l.lg ate n1 n9 = 5.3e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 5e-9
res. rl gate n1 n9 = 53
res. rl drain n2 n5 = 10
res. rl sour ce n3 n7 = 50
m.mmed n16 n6 n8 n8 = m odel=m m edmod, l=1u, w=1u
m.ms t rong n16 n6 n8 n8 = mod el = m strongmod, l= 1u, w=1u
m.mw eak n16 n21 n8 n8 = model=m wea kmod, l=1u, w=1u
res. rbreak n17 n18 = 1, tc1 = 9. 4e-4,tc 2=-9e-7
res. rdrain n50 n16 = 9e-4, tc1=2 .2e-2 ,tc2=6e -5
r e s .rg ate n9 n20 = 1.4
res. rslc1 n5 n51 = 1e-6, tc1 =2e-3,tc2= 1e-5
res. rslc2 n5 n50 = 1e3
res. rsour ce n8 n7 = 3e-3 , tc1=1e- 3,tc2=1e- 6
res. rvthres n22 n8 = 1, tc1=-6e- 3,tc2=-1.6e-5
res.rvtemp n18 n19 = 1, tc1=-2.4e-3,tc2=1e-6
sw_v cs p.s1a n6 n12 n13 n8 = mo del =s1a m od
sw_v cs p.s1b n13 n12 n1 3 n8 = model = s1 bmod
sw_v cs p.s2a n6 n15 n14 n13 = mode l = s2 amod
sw_v cs p.s2b n13 n15 n1 4 n13 = model = s 2bmod
v.vbat n22 n19 = dc =1
equations {
i (n51->n50) +=iscl
iscl : v (n51, n50) = ((v(n5, n51)/(1e-9+abs(v(n5 ,n51))))*((abs(v(n5 ,n51)* 1e6/ 350))** 5))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
©2002 Fairchild Semiconductor Corporation FDB060AN08A0 / FDP060AN08A0 Rev. A
FDB060AN08A0 / FDP060AN08A0
PSPICE Thermal Model
REV 23 October 2002
FDP060AN08A0T
CTHERM1 TH 6 9.6e-3
CTH ERM2 6 5 9. 7e-3
CTH ERM3 5 4 9. 8e-3
CTH ERM4 4 3 1e-2
CTH ERM5 3 2 3e-2
CTH ERM6 2 TL 9e-2
RTHERM1 TH 6 3.2e-3
RTH ERM2 6 5 8. 1e-3
RTH ERM3 5 4 2. 3e-2
RTH ERM4 4 3 1. 2e-1
RTH ERM5 3 2 1. 5e-1
RTH ERM6 2 TL 1.6e -1
SABER Thermal Mod el
SABE R t hermal m odel F DP060A N08A0T
template thermal_model th tl
the r m al_ c th , tl
{
cth er m.ctherm 1 th 6 =9.6e -3
ctherm.ctherm2 6 5 =9.7e-3
ctherm.ctherm3 5 4 =9.8e-3
cthe rm .ctherm4 4 3 =1e-2
cthe rm .ctherm5 3 2 =3e-2
ctherm.ctherm6 2 tl =9e-2
rtherm.r th erm 1 th 6 =3 .2e-3
r the rm .rthe rm2 6 5 =8.1 e-3
r the rm .rthe rm3 5 4 =2.3 e-2
r the rm .rthe rm4 4 3 =1.2 e-1
r the rm .rthe rm5 3 2 =1.5 e-1
r the rm .rt her m 6 2 t l =1 . 6 e-1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
Rev. I1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconduct or owns or is aut horized t o use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
wh ich, (a) ar e int ende d fo r s urgic al i mpla nt into the body ,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A c r it ic al c om pon en t i s an y c om po ne nt o f a l if e s upp or t
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Defini ti on of Terms
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
FAST®
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench®
QFET™
QS
QT Optoelectronics™
Quiet Series
RapidConfigure™
RapidConnect™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation
UHC™
UltraFET®
VCX™
A cross the board. Around the world.™
T he Po wer Franchise™
P rogrammable Acti ve Droop™
Datasheet Identification Product Status Definition
Adva nce Information Formative or In
Design This datasheet cont ains the design specific atio ns for
product development. Specifications may change in
any manner without notice.
Prelimin ary F irs t Productio n This dat asheet contains preliminary data , and
supplementary data will be pub lished at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without no tice in order to improve
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor re serves the right t o make changes at
any time without notice in order to improve design.
Obsolete Not In P roduction This data s heet cont ains specif ications on a product
that has been disco nti nued by Fairchild semiconductor .
The datasheet is printed for reference inf ormation only.