PD - 94799A IRGB30B60K IRGS30B60K IRGSL30B60K INSULATED GATE BIPOLAR TRANSISTOR VCES = 600V C Features * * * * * IC = 50A, TC=100C at TJ=175C Low VCE (on) Non Punch Through IGBT Technology. 10s Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175C. G tsc > 10s, TJ=150C E n-channel VCE(on) typ. = 1.95V Benefits * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. TO-220AB IRGB30B60K D2 Pak IRGS30B60K TO-262 IRGSL30B60K Absolute Maximum Ratings Parameter VCES Collector-to-Emitter Voltage IC @ TC = 25C Continuous Collector Current Max. Units 600 78 V A g IC @ TC = 100C Continuous Collector Current 50 ICM 120 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current VISOL RMS Isolation Voltage, Terminal to Case, t=1 min. 2500 VGE Gate-to-Emitter Voltage 20 c 120 PD @ TC = 25C Maximum Power Dissipation PD @ TC = 100C Maximum Power Dissipation Operating Junction and TJ TSTG V 370 W 180 -55 to +175 Storage Temperature Range C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf*in (1.1 N*m) Thermal / Mechanical Characteristics Min. Typ. Max. Units RJC Junction-to-Case- IGBT Parameter --- --- 0.41 C/W RCS --- 0.50 --- RJA Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount --- --- 62 RJA Junction-to-Ambient (PCB Mount, Steady State) --- --- 40 Wt Weight --- 1.44 --- www.irf.com d e g 1 02/26/04 IRGB/S/SL30B60K Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)CES V(BR)CES/TJ VCE(on) VGE(th) VGE(th)/TJ gfe ICES IGES Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage -- -- Collector-to-Emitter Voltage -- -- Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient -- Forward Transconductance -- -- Zero Gate Voltage Collector Current -- -- Gate-to-Emitter Leakage Current -- -- 0.40 1.95 2.40 2.6 4.5 -10 18 5.0 1000 1830 -- Conditions Ref.Fig. -- V VGE = 0V, IC = 500A -- V/C VGE = 0V, IC = 1mA (25C-150C) IC = 30A, VGE = 15V, TJ = 25C 2.35 2.75 V IC = 30A, VGE = 15V, TJ = 150C IC = 30A, VGE = 15V, TJ = 175C 2.95 5.5 V VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 1.0mA (25C-150C) -- S VCE = 50V, IC = 50A, PW = 80s VGE = 0V, VCE = 600V 250 2000 A VGE = 0V, VCE = 600V, TJ = 150C VGE = 0V, VCE = 600V, TJ = 175C 3000 100 nA VGE = 20V, VCE = 0V 5,6,7 8,9,10 8,9,10 11 Switching Characteristics @ TJ = 25C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Min. Typ. Max. Units -- 102 153 -- 14 21 -- 44 66 -- 350 620 -- 825 955 -- 1175 1575 -- 46 60 -- 28 39 -- 185 200 -- 31 40 -- 635 1085 -- 1150 1350 -- 1785 2435 -- 46 60 -- 28 39 -- 205 235 -- 32 42 -- 7.5 -- -- 1750 2500 -- 160 255 -- 60 90 FULL SQUARE 10 -- -- 200 -- -- nC J ns J ns Conditions IC = 30A VCC = 400V VGE = 15V IC = 30A, VCC = 400V VGE = 15V, RG = 10, L = 200H TJ = 25C IC = 30A, VCC = 400V VGE = 15V, RG = 10, L = 200H TJ = 25C Ref.Fig. 17 CT1 CT4 f IC = 30A, VCC = 400V VGE = 15V, RG = 10, L = 200H TJ = 150C IC = 30A, VCC = 400V VGE = 15V, RG = 10, L = 200H TJ = 150C f CT4 CT4 12,14 WF1,WF2 13,15 CT4 WF1 WF2 nH pF s A Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150C, IC = 120A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG =10 TJ = 150C, Vp = 600V, RG = 10 VCC=360V,VGE = +15V to 0V 16 4 CT2 CT3 WF3 WF3 Note to are on page 13 2 www.irf.com 80 400 70 350 60 300 50 250 Ptot (W) IC (A) IRGB/S/SL30B60K 40 200 30 150 20 100 10 50 0 0 0 20 40 60 80 100 120 140 160 180 0 T C (C) 20 40 60 80 100 120 140 160 180 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 1000 Fig. 2 - Power Dissipation vs. Case Temperature 1000 100 100 IC A) IC (A) 10 s 10 100 s 10 1ms 1 DC 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25C; TJ 150C www.irf.com 10000 1 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V 3 IRGB/S/SL30B60K 60 50 VGE = 18V VGE = 15V 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V 40 VGE = 12V VGE = 10V VGE = 8.0V ICE (A) ICE (A) 60 30 VGE = 8.0V 30 20 20 10 10 0 0 0 1 2 3 4 0 5 1 2 3 4 5 VCE (V) VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s ICE (A) 60 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V VGE = 8.0V 30 20 10 0 0 1 2 3 4 5 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s 4 www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A VCE (V) VCE (V) IRGB/S/SL30B60K 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40C Fig. 9 - Typical VCE vs. VGE TJ = 25C 250 20 18 T J = 25C T J = 150C 200 16 12 10 ICE = 15A ICE = 30A 8 ICE = 60A ICE (A) VCE (V) 14 150 100 6 T J = 150C 50 4 T J = 25C 2 0 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10s 5 IRGB/S/SL30B60K 3000 1000 Swiching Time (ns) 2500 Energy (J) 2000 EOFF 1500 EON 1000 tdOFF 100 td ON tF 500 tR 0 0 20 40 60 10 80 0 IC (A) 20 40 60 80 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 150C; L=200H; VCE= 400V, RG= 10; VGE= 15V Fig. 13 - Typ. Switching Time vs. IC TJ = 150C; L=200H; VCE= 400V RG= 10; VGE= 15V 10000 3000 Energy (J) 2000 Swiching Time (ns) 2500 EOFF EON 1500 1000 1000 tdOFF 100 tdON tF 500 tR 10 0 0 25 50 75 100 RG () Fig. 14 - Typ. Energy Loss vs. RG TJ = 150C; L=200H; VCE= 400V ICE= 30A; VGE= 15V 6 125 0 25 50 75 100 125 RG () Fig. 15 - Typ. Switching Time vs. RG TJ = 150C; L=200H; VCE= 400V ICE= 30A; VGE= 15V www.irf.com IRGB/S/SL30B60K 16 10000 14 200V 12 1000 400V 10 VGE (V) Capacitance (pF) Cies Coes 8 6 100 4 2 Cres 0 10 0 20 40 60 80 0 100 25 50 75 100 125 Q G, Total Gate Charge (nC) VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 30A; L = 600H Thermal Response ( Z thJC ) 10 1 0.1 0.01 D = 0.50 0.20 0.10 J 0.05 0.02 0.01 R1 R1 J 1 R2 R2 C 1 2 2 Ri (C/W) i (sec) 0.200 0.000428 0.209 0.013031 Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL30B60K L L VCC DUT 0 + - 80 V DUT 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL30B60K 700 600 35 700 70 30 600 60 25 500 90% ICE tf 300 15 5% V CE 5% ICE 100 400 0 40 300 10 200 5 100 0 0 30 90% test current tr 10% test current 5% V CE 0.20 0.40 0.60 -100 15.90 16.00 Time(s) 16.10 10 16.20 -10 16.30 Time (s) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 600 300 500 250 ICE 400 200 VCE (V) VCE 300 150 200 100 100 50 0 -5.00 0.00 5.00 10.00 ICE (A) 0.00 -5 0.80 20 0 Eon Loss Eoff Loss -100 -0.20 ICE (A) 20 VCE (V) 400 200 50 TEST CURRENT ICE (A) V CE (V) 500 0 15.00 time (S) Fig. WF3- Typ. S.C Waveform @ TC = 150C using Fig. CT.3 www.irf.com 9 IRGB/S/SL30B60K TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 LEAD ASSIGNMENTS 15.24 (.600) 14.84 (.584) IGBTs, CoPACK HEXFET 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1- GATE 1- GATE 2- COLLECTOR 2- DRAIN1 - GATE 3- EMITTER 3- SOURCE 2 - DRAIN 4- COLLECTOR 4- DRAIN3 - SOURCE 3 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information ( ' 2 & 7 /2 / $ 1 2 7, $ 1 5 7( ,1 (5 % 0 8 1 7 5 3$ ) ,5 1 $ ,6 ,6 7+ /( 3 0 ;$ ( (5 ), 7, (& 5 ( ' 2 & 7( $ ' & ( ,1 / /< % (0 6 6 $ ( + 7 ,1 2 * /2 : : 1 2 ' /( % (0 6 6 $ /< % (0 6 6 $ 5 $ <( ( ' 2 & 7 /2 . (( : & ( 1 /, 10 www.irf.com IRGB/S/SL30B60K D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information 5 ( % 0 8 1 7 5 $ 3 / $ 1 2 7,$ 1 (75 1 , 7+ , : 6 ) 5 , 1( $ 6 ' , 2 & 6 , 72 + 7 / 6 ) 5 ( ,) ,7 & ( 5 : : 1 2 ' /( % 0 66( $ 2 * 2 / /( 1 , /< / % 0 (6 6 $ ( 7+ 1 , ( ' 2 & 7($ '