© Freescale Semiconductor, Inc., 2006. All rights reserved.
Freescale Semiconductor
Technical Data
This doc ument conta ins detailed information on power
considerations, DC/AC electrical characteristics, and AC timing
specifications for the MPC866/859 family (refer to Table 1 for a
list of devices) . The MPC866P is the superset device of the
MPC866/859 fa mily.This doc ument de scribes pertinent e lectr ical
and physical characteristics of the MPC8245. For functiona l
characteristics of the processor , refer to the MPC866
PowerQUICC Family Users Manual (MPC866UM/D).
1Overview
The MPC866/859 is a derivative of Freescale’s MPC860
PowerQUICC™ fami ly of devic es. It is a versatile single -chip
inte grated m icropro cessor and pe riphe ral c ombinati on that can be
used in a variety of controller applic ations and communications
and networking system s. The MPC866/859/859DSL provides
enhanced ATM functiona lity over that of other ATM-enabled
members of the MPC860 family.
MPC866EC
Rev. 2, 2/2006
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 8
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Thermal Calculation and Measurement . . . . . . . . . . 12
8. Power Supply and Power Sequencing . . . . . . . . . . . 15
9. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 46
12. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 48
13. UTOPIA AC Electrical Specifications . . . . . . . . . . . 72
14. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 74
15. Mechanical Data and O r dering I nf ormation . . . . . . . 78
16. Document Revision History . . . . . . . . . . . . . . . . . . . 93
MPC866/MPC859
Hardware Specifications
MPC866/MPC859 Hardware Specifications, Rev. 2
2Freescale Semiconductor
Features
Table 1 shows the functionality supported by the members of the MPC866/859 fam ily.
2Features
The following list summarizes the key MPC866/859 fea tures:
Embedded single-i ssue, 32-bit PowerPC™ core (implement ing the PowerPC architecture) with
thirty-two 32-bit general-pur pose registers (GPRs)
The core performs branch prediction with co nditional prefetch, without conditional execution
4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction c ache (see Table 1)
16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;
4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-wa y, set-assoc iative
with 128 sets.
8-Kbyte data cache (MPC866P and MPC859P) is two-wa y, set-assoc iative with 256 sets; 4-Kbyte
data c ache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache
blocks
Caches a re physically add ressed, implement a least re cently used (LRU) r eplacement algorithm, and
are lockable on a cache block basis.
MMUs with 32-entry TLB, fully associa tive instruc tion and data TLBs
MMUs support multiple page size s of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual addre ss spaces
and 16 protection groups.
Advanced on-chip-emulation debug mode
The MPC866/859 provi des enhance d ATM functionality ove r that of the MPC860SAR. The MPC866/859
adds major new features available in 'enhanc ed SAR' (ESAR) mode, includ ing the following:
Improved operati on, a dministra tion, and mainten ance (OAM) support
OAM performance monitoring (PM) support
Multiple APC priority le vels available to support a range of traffic pac e requirement s
Table 1. MPC866 Family Functionality
Part
Cache Ethernet
SCC SMC
Instruction Data 10T 10/100
MPC866P 16 Kbytes 8 Kbytes Up to 4 1 4 2
MPC866T 4 Kbytes 4 Kbytes Up to 4 1 4 2
MPC859P 16 Kbytes 8 Kbytes 1112
MPC859T 4 Kbytes 4 Kbytes 1112
MPC859DSL 4 Kbytes 4 Kbytes 1 1 1 1
1
On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot
Assigner (TSA).
1 2
2
On the MPC859DSL, the SMC (SMC1) is for UART only.
MPC852T 3
3
For more details on the MPC852T, please refer to the
MPC852T Hardware Specifications.
4 KBytes4 Kbytes2121
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 3
Features
ATM port-to-port switching capa bility without the need for RAM-based microcode
Simultaneous MII (10/100B ase-T) and UT OPIA (half -dupl ex) capabili ty
Optional statistical cell c ounters per PHY
UTOPIA level 2 complia nt interface with added FIFO buffering to reduce the total c ell transmission
time. (The earlier UTO PIA level 1 specification is also suppor ted.)
Multi-PHY support on the MPC866, MPC859P, and MPC859T
Four PHY support on the MPC866/859
Parameter RAM for both SPI and I 2C can be relocated without R AM-based microcode
Supports full-dupl ex UTOPIA both master (ATM side ) and slave (PHY side ) operation using a 'split ' bus
AAL2/VBR functionali ty is ROM-resident.
Up to 32-bit data bus (dynamic bus sizing f or 8, 1 6, an d 32 bits)
Thirty-two address lines
Memory controller (eight ba nks)
Contains complet e dynamic RAM (DRAM) controlle r
Each b ank can be a chip sel ect or RA S to support a DRAM bank
Up to 30 wait states programmable per memory bank
Gluel ess inte rface to page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory
devices.
DRAM controller progra mmable to suppor t most size and speed memory interfaces
Four CAS lines, four WE lines, and one OE line
Boot chip-select a vailable at reset (optio ns for 8-, 16-, or 32-bit memory)
Variable block sizes ( 32 Kbytes–256 Mbytes)
Selectable wri te protection
On-chip bus arbitration logic
General-purpose timers
Four 16-bit timers casc adable to be two 32-bit timers
Gat e mo de can en abl e/d i sab le count i ng
Interrupt can be masked on reference match and event captur e
Fast Ethernet contr oller (FEC)
Simultaneous MII (10/100B ase-T) and UT OPIA opera tion when using the UTOPIA multiple xed bus
System integration unit (SIU)
Bus monitor
Software watchdog
Periodic interrupt timer (PIT)
Low-power stop mode
Clock synthesizer
Decrementer and time base from the PowerPC architecture
Reset controller
IEEE 11 49.1 te st access por t (JTAG)
MPC866/MPC859 Hardware Specifications, Rev. 2
4Freescale Semiconductor
Features
Interrupts
Seven ex te rnal in terrupt request (IRQ) lines
Twelve port pins with int errupt capability
The MPC866P and MPC866T have 23 internal interru pt sources; the MPC859P, MPC8 59T, and
MPC859DSL have 20 internal inter rupt sources.
Programmable priority between SCCs (MPC866P and MPC866T)
Programmable highe st priority r equest
Communications processor module (CPM)
RISC controller
Communicat ion-specific commands (for exam ple, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and
RESTART TRANSMIT)
Supports contin uous mode transmiss ion and rece ption on all serial channels
Up to 8-Kbytes of dual-port RAM
MPC866P and MPC866T have 16 serial DMA (SDMA) channels; MPC859P, MPC859T, an d
MPC859DSL have 10 serial DMA (SDMA) channels.
Th ree para lle l I/O reg isters with ope n -d rain cap abi l ity
Four baud rate generator s
Independent (ca n be connecte d to any SCC or SMC)
Allow changes during operation
Autobaud support option
MPC866P and MPC866T ha ve four SCCs (serial communication controller); MPC859P, MPC859T, and
MPC859DSL have one SCC; and SCC1 on MPC859DSL supports Ethe rnet only.
Serial ATM capability on all SCCs
Optional UTOPI A port on SCC4
Ethernet/IEEE 802.3 optional on SCC1–4, supportin g full 10-Mbps operation
HDLC/SDLC
HDLC bus (implements an HDLC-based local area network (LAN))
Asynchronous HDLC to support PPP (point-to-point protocol)
AppleTalk
Universal async hronous receiver transmit ter (UART)
Synchronous UART
Serial infra red (IrDA)
Binary synchronous communication (BISYNC)
To tally tran sparent (bit streams)
To tally tran sparent (frame based with optional cyclic redundancy check (CRC)
Two SMCs (serial management channels) (MPC859DSL has one S M C (SMC 1) for UART.)
UART
Transparent
General circuit interface (GCI) controller
Can be connected to the time-division multiplexed (TDM) channels
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 5
Features
One serial periphe ral interface (SPI)
Supports master and slave modes
Supports multipl e-master ope ration on the same bus
One inter-integrate d ci rcuit (I2C) port
Supports master and slave modes
Multiple-mas ter environment support
Time slot assigner (TSA) (MPC859DSL does not have TSA.)
Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
1- or 8-bit resolution
Allows independent transmit and receive routing, fra me synchronization, and clocking
Allows dynamic changes
On MPC866P and MPC866T, can be internally connected to six seri al channels (four SCCs and two
SMCs); on MPC859P and MPC859T, can be conne cted to three seri al channels (one SCC and two
SMCs).
Parallel interface port (PIP)
Centronics interface support
Supports fast connection between compatible ports on M PC866/859 or MC68360
PCMCIA interface
Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1)
Supports one or two PCMCIA sockets whether ESAR functionality is enabled
Eight memory or I/O windows supported
Debug interface
Eight c omparat ors: four opera te on instructi on address, two operate on data address , and two operat e on
data.
Suppor ts c onditions: = < >
Each watchpoint can generate a breakpoint internally
Normal high and normal low power modes to conserve power
1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V
tolerant pins .
357-pin plastic ba ll grid array (PBGA) pa ckage
Operation up to 133 MHz
MPC866/MPC859 Hardware Specifications, Rev. 2
6Freescale Semiconductor
Features
The MPC866/859 is comprised of thre e modules that each use a 32-bit inter nal bus: MPC8xx core, system
integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in
Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.
Figure 1. MPC866P Block Diagram
SCC3 SCC4
Bus
System Interface Unit (SIU)
Embedded
Parallel I/O
Memory Controller
4
Timers
Interrupt
Controllers
8-Kbyte
Dual-Port RAM
16 Virtual
Serial
and
2
Independent
DMA
Channels
System Functions
PCMCIA/ATA Interface
16-Kbyte
Instruction Cache
32-Entry ITLB
Instruction MMU
8-Kbyte
Data Cache
32-Entry DTLB
Data MMU
Instruction
Bus
Load/Store
Bus
Unified
4 Baud Rate
Generators
Parallel Interface Port
and UTOPIA
Internal
Bus Interface
Unit
External
Bus Interface
Unit
Timers
32-Bit RISC Controller
and Program
ROM
SCC1
Serial Interface
I2CSPISMC2SMC1SCC2
Time Slot Assigner
MPC8xx
Processor
Core
DMAs
FIFOs
10/100
MII
Base-T
Media Access
Time Slot Assigner
Control
Fast Ethernet
Controller
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 7
Features
Figure 2. MPC859P/859T/MPC859DSL Block Diagram
Bus
System Interface Unit (SIU)
Embedded
Parallel I/O
Memory Controller
4
Timers
Interrupt
Controllers
8-Kbyte
Dual-Port RAM
10 Virtual
Serial
and
2
Independent
DMA
Channels
System Functions
PCMCIA/ATA Interface
4-Kbyte
Instruction Cache
32-Entry ITLB
Instruction MMU
4-Kbyte
Data Cache
32-Entry DTLB
Data MMU
Instruction
Bus
Load/Store
Bus
Unified
4 Baud Rate
Generators
Parallel Interface Port
and UTOPIA
Internal
Bus Interface
Unit
External
Bus Interface
Unit
Timers
32-Bit RISC Controller
and Program
ROM
SCC1
Serial Interface
I2CSPISMC2*SMC1
Time Slot Assigner
MPC8xx
Processor
Core
DMAs
FIFOs
10/100
MII
Base-T
Media Access
Time Slot Assigner*
Control
Fast Ethernet
Controller
* The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA
controllers.
The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.
MPC866/MPC859 Hardware Specifications, Rev. 2
8Freescale Semiconductor
Maximum Tolerated Ratings
3 Maximum Tolerated Ratings
This se ction provides the maximum tolerated volta ge and temperature ranges for the MPC866/859. Table 2 shows
the maximum tolerated ratings, and Table 3 shows the operating temperatures.
Table 3. Operating Temperatures
This device contai ns circ uitry prote cting agai nst dama ge due to high-static voltage or electrical fi elds; however, it
is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages
to this high-impedan ce circuit. Reliability of ope ration is enhan ced if unused inp uts are tie d to an ap propriat e logic
voltage level (for example, eithe r GND or VDD).
Table 2. Maximum Tolerated Ratings
Rating Symbol Value Unit
Supply voltage 1
1
The power supply of the device must start its ramp from 0.0 V.
VDDH – 0.3 to 4.0 V
VDDL – 0.3 to 2.0 V
VDDSYN – 0.3 to 2.0 V
Difference between VDDL to VDDSYN 100 mV
Input voltage 2
2
Functional operating conditions are provided with the DC electrical specifications in Ta b l e 6 . Absolute maximum
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may
affect device reliability or cause permanent damage to the device. See page 15.
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to
power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be
applied to its inputs).
Vin GND – 0.3 to VDDH V
Storage temperature range Tstg –55 to +150 °C
Rating Symbol Value Unit
Temperature 1 (standard)
1
Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as
junction temperature, Tj.
TA(min) C
Tj(max) 95 °C
Temperature (extended) TA(min) –40 °C
Tj(max) 100 °C
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 9
Thermal Characteristics
4 Thermal Characteristics
Table 4 shows the thermal c hara cteris tics for the MPC866/859.
Table 4. MPC866/859 Thermal Resistance Data
Rating Environment Symbol Value Unit
Junction-to-ambient 1
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal
resistance.
Natural Convection Single-layer board (1s) RθJA 2
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
37 °C/W
Four-layer board (2s2p) RθJMA 3
3
Per JEDEC JESD51-6 with the board horizontal.
23
Airflow (200 ft/min) Single-layer board (1s) RθJMA330
Four-layer board (2s2p) RθJMA319
Junction-to-board 4
4
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
RθJB 13
Junction-to-case 5
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed
pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated
value from the junction to the exposed pad without contact resistance.
RθJC 6
Junction-to-package top 6
6
Thermal characterization parameter indicating the temperature difference between package top and junction
temperature per JEDEC JESD51-2.
Natural Convection ΨJT 2
Airflow (200 ft/min) ΨJT 2
MPC866/MPC859 Hardware Specifications, Rev. 2
10 Freescale Semiconductor
Power Dissipation
5 Power Dissipation
Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1
mode, whe re CPU frequency is twice the bus speed.
6 DC Characteristics
Table 6 shows the DC electri cal characteristics for the MPC866/859.
Table 5. Power Dissipation (PD)
Die Revision Bus Mode CPU
Frequency Typical 1
1
Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.
Maximum 2
2
Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.
NOTE
Values in Table 5 represe nt VDDL based powe r di ssipati on a nd
do not include I/O power dissipation over VDDH. I/O power
dissipation varies widely by application due to buffer current,
depending on external circuitry. The VDDSYN power
dissipation is negligible.
Unit
0 1:1 50 MHz 110 140 mW
66 MHz 150 180 mW
2:1 66 MHz 140 160 mW
80 MHz 170 200 mW
100 MHz 210 250 mW
133 MHz 260 320 mW
Table 6. DC Electrical Specifications
Characteristic Symbol Min Max Unit
Operating voltage VDDL (core) 1.7 1.9 V
VDDH (I/O) 3.135 3.465 V
VDDSYN 1 1.7 1.9 V
Difference between
VDDL to VDDSYN
100 mV
Input high voltage (all inputs except EXTAL and
EXTCLK) 2
VIH 2.0 3.465 V
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 11
DC Characteristics
Input low voltage VIL GND 0.8 V
EXTAL, EXTCLK input high voltage VIHC 0.7*(VDDH) VDDH V
Input leakage current, Vin = 5.5V (except TMS, TRST,
DSCK and DSDI pins) for 5 Volts Tolerant Pins 2 Iin 100 µA
Input leakage current, Vin = VDDH (except TMS, TRST,
DSCK, and DSDI)
IIn —10µA
Input leakage current, Vin = 0 V (except TMS, TRST,
DSCK and DSDI pins)
IIn —10µA
Input capacitance 3 Cin —20pF
Output high voltage, IOH = – 2.0 mA,
except XTAL, and Open drain pins
VOH 2.4 V
Output low voltage
IOL = 2.0 mA (CLKOUT)
IOL = 3.2 mA 4
IOL = 5.3 mA 5
IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)
IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)
VOL 0.5 V
1
The difference between VDDL and VDDSYN can not be more than 100 m V.
2
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V
tolerant.
3
Input capacitance is periodically sampled.
4
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2,
IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1,
IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9,
L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6,
TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3,
BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0,
REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27,
BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22,
SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18,
L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15,
L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10,
CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6,
CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB,
PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3,
PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].
5
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A,
ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).
Table 6. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
MPC866/MPC859 Hardware Specifications, Rev. 2
12 Freescale Semiconductor
Thermal Calculation and Measurement
7 Thermal Calculation and Measurement
For the fol lowing discuss ions, PD = (VDDL x IDDL) + P I/O, where P I/O is the po wer di ssipati on of the I/O driv ers.
The VDDSYN power dissipation is negligible.
7.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junc tion temperature, TJ, in °C can be obtained from the equation:
TJ = TA +(R θJA x PD)
where:
TA = amb ien t tem pe rat ure (ºC)
RθJA = package junction- to- ambient ther mal resistance (ºC/W)
PD = power dissipation in package
The junction-to-ambient the rmal resistance is an industry sta ndard value tha t provides a quick and easy esti mation
of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor
of two (in the quantity TJ-TA) are possibl e.
7.2 Estimation with Junction-to-Case Thermal Resistance
Histor ically , the therm al r esista nce has frequentl y been express ed as the sum of a junction-to -case ther mal re sistance
and a case-to-ambient thermal resistance:
RθJA = RθJC + RθCA
where:
RθJA = ju n c t io n- t o-a mb ient th er m al r esi st a n c e C/W )
RθJC = junction-to-case thermal resistanceC/W)
RθCA = cas e- to- am bien t ther ma l resi sta n ce (ºC /W )
RθJC is devi ce rela ted and cannot be influenced by the user. The user adjusts the therma l environment to affect the
case -t o-ambie nt the rmal resi st an ce, RθCA. For instance, the user can change the airflow around the device, add a
heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipati on on the
printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks
where some 90% of the heat flows through the case and the heat sink to the ambient envi ronment. For most
packages, a better model is required.
7.3 Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model that has demonstrat ed reasona ble accuracy (about 20%) is a two-resistor model
consi sting of a junctio n-to- board and a junction-to-case the rmal resistanc e. The junc tion-to-case covers t he situation
where a heat sink is used or where a substa ntial amount of heat is dissipated from the top of the package. The
junction-to-board the rmal resistance describes the thermal performance when most of the heat is conducted to the
printed-cir cuit board. I t has been observed that the thermal perfor manc e of most plastic packages and especial ly
PBGA packages is strongly dependent on the board temperature; see Figure 3.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 13
Thermal Calculation and Measurement
Figure 3. Effect of Board Temperature Rise on Thermal Behavior
If the board temperature is known, an estimate of the junction temperature in the environment can be made using
the following equation:
TJ = TB +(R θJB x PD)
where:
RθJB = junction-to-board therma l resistance (ºC/W)
TB = board te mp er at ure ºC
PD = power dissipation in package
If the board temperature is know n and the heat loss from the package case to the air can be ignored, acceptable
prediction s of junction temperature can be made. For this method to work, the board and board mounting must be
similar to the test board used to determine the junction-to- boa rd thermal res istance, namel y a 2s2p (board with a
power and a ground plane) and vias attaching the thermal ba lls to the ground plane.
7.4 Estimation Using Simulation
When t he board t emperature i s not kn own, a ther mal simulation of the a pplication is ne eded. The simple two-re sistor
model can be used wi th the thermal simulatio n of th e application [2], or a more accurate and compl ex model of the
package can be used in the thermal simulation.
MPC866/MPC859 Hardware Specifications, Rev. 2
14 Freescale Semiconductor
Thermal Calculation and Measurement
7.5 Experimental Determination
To determine the junction temperature of the de vice in the applic ation after prototypes are available, the thermal
char act erizat ion pa ram et er (ΨJT) can be used to determine the juncti on tempe rature with a measur ement of the
temperature at the top center of the package case using the following equation:
TJ = TT +(ΨJT x PD)
where:
ΨJT = thermal characterizat ion parameter
TT = th ermocouple temperature on top of package
PD = power dissipation in package
The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40
gauge type T thermocouple epo xied to the top center of the package case. The thermocouple should be positioned
so that the thermocouple junction rests on the package. A small amount of epoxy is place d over the thermocouple
junct ion and ove r about 1 m m of wire extending f rom th e junction. The the rmocouple wir e is pl aced fl at ag ainst the
package case to avoid measurement errors cause d by cooling effects of the ther mocouple wire.
7.6 References
Semiconductor Equipm ent and Materials Internationa l(415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) specifi cations800-854-7179 or
(Available from Global Engineering Documents)303-397-7956
JED EC Spe cifica t ion s h tt p:/ / ww w.jed ec.o rg
1. C.E. Triplett and B. Joine r, “An Experimental Characterizat ion of a 272 PBGA Within an Automotive Engine
Controller Module, ” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
2. B. Joine r and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its
Application in Therm al Modeling,” Proceedings of SemiTherm, San Die go, 1999, pp. 212-220.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 15
Power Supply and Power Sequencing
8 Power Supply and Power Sequencing
This section provides design considerations for the MPC866/859 power supply . The MPC866/859 has a core voltage
(VDDL) and PLL volta ge (VDDSYN) that operate s at a lowe r voltage than th e I/O vo ltage VDDH. The I/O se ction
of the MPC866/859 is supplied with 3.3 V acr oss VDDH and VSS (GND).
Signals PA[0 :15], PB[14:31], PC[4:15 ], PD[3:15] , TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO
are 5-V tolerant. All inputs cannot be more than 2.5 V greater than VDDH. In add ition, 5-V tolera nt pins cannot
exceed 5.5 V and the remaining input pins cannot exceed 3.465 V. This restriction applie s to power up/down and
normal operation.
One consequence of multiple power supplies is that when power is initia lly applied the voltage rails ram p up at
diffe rent rates . The rates depend on the nature of the power supply, t he type of load on eac h power supply, and the
manner in which diff erent voltages are derived. The following restrictions apply:
VDDL must not exceed VDDH during power up and power down.
VDDL must not exceed 1.9 V and VDDH must not exceed 3.465 V.
These cautions ar e necessary for the l ong term relia bility of the part. I f t hey ar e viol ated, t he ele ctrostatic di sch arge
(ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the syste m
power supply design does not cont rol the volta ge seque ncing, the circuit shown in Figure 4 can be added to meet
these requir ements. The MUR420 Schott ky diodes contr ol the maximum pot ent i a l difference bet ween the external
bus and core power supplies on powerup and the 1N5820 diodes regulate the maxim um potential difference on
powerdown.
Figure 4. Example Voltage Sequencing Circuit
9 Layout Practices
Each V DD pin on the MPC866/859 should be provide d with a low-impedance pat h to the boards supply.
Furthe rmore, e ach GND pin shou ld be pro vided wit h a l ow-i mpedance path to ground. The p ower s upply pins dr ive
distinct groups of logic on chip. The VDD power supply should be bypassed to gr ound using at least four 0.1 µF
bypass capacitors located as close as possible to the four sides of the package. Each boa rd designed should be
character ized a nd addition al appropriate decoupl ing capacitors should be used if required. The capacitor leads and
associated printed-circuit traces connecting to chip VDD and GND should be kept to less than 1/2” per capacitor lead.
At a minimum, a four -laye r board employing two inner layers as VDD and GND planes should be used.
All output pins on the MPC866/859 have fast rise and fall times. Printed-circuit (PC) trace interconnection length
should be minimized in order to mini mize undershoot and reflections caused by these fast output switching tim es.
VDDH VDDL
1N5820
MUR420
MPC866/MPC859 Hardware Specifications, Rev. 2
16 Freescale Semiconductor
Bus Signal Timing
This recommendati on particularly applies to the addre ss and data buses. Maximum PC trace lengths of 6” are
recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the
PC traces. Attention to proper PCB layout and bypassing becomes especi al ly critical in systems with higher
capacitive loads because these loads create higher transient currents in the VDD and GND c ircuits. Pull up all unused
inputs or signals tha t will be inputs during r eset. Specia l care should be t aken to minimize the noise levels on the
PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthe sizer Power (VDDSYN,
VSSSYN, VSSSYN1), in the MPC866 User s Manual.
10 Bus Signal Timing
The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in
half-speed bus mode (for example , a n MPC866/859 used at 100 MHz must be configured for a 50-MHz bus).
Table 7 and Table 8 show the frequency ranges for standard part frequencies.
Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the
MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum
delays. CLKOUT assumes a 100-pF load maximum delay.
Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)
Part Freq 50 MHz 66 MHz
Min Max Min Max
Core 40 50 40 66.67
Bus 40 50 40 66.67
Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)
Part
Freq 50 MHz 66 MHz 100 MHz 133 MHz
Min Max Min Max Min Max Min Max
Core 40 50 40 66.67 40 100 40 133.34
Bus 20 25 20 33.33 20 50 20 66.67
Table 9. Bus Operation Timings
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B1 Bus Period (CLKOUT) See Ta b l e 7 ——————ns
B1a EXTCLK to CLKOUT phase skew – 2 +2 – 2 +2 2 +2 2 +2 ns
B1b CLKOUT frequency jitter peak-to-peak 1 1 1 1 ns
B1c Frequency jitter on EXTCLK 0.50 0.50 0.50 0.50 %
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 17
Bus Signal Timing
B1d CLKOUT phase jitter peak-to-peak
for OSCLK 15 MHz
4—4—4—4ns
CLKOUT phase jitter peak-to-peak
for OSCLK < 15 MHz
5—5—5—5ns
B2 CLKOUT pulse width low (MIN = 0.4 x
B1, MAX = 0.6 x B1)
12.1 18.2 10.0 15.0 8.0 12.0 6.1 9.1 ns
B3 CLKOUT pulse width high (MIN = 0.4 x
B1, MAX = 0.6 x B1)
12.1 18.2 10.0 15.0 8.0 12.0 6.1 9.1 ns
B4 CLKOUT rise time 4.00 4.00 4.00 4.00 ns
B5 CLKOUT fall time 4.00 4.00 4.00 4.00 ns
B7 CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3)
output hold (MIN = 0.25 x B1)
7.60 6.30 5.00 3.80 ns
B7a CLKOUT to TSIZ(0:1), REG, RSV,
AT ( 0 :3), B D I P, PTR output hold (MIN =
0.25 x B1)
7.60 6.30 5.00 3.80 ns
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1),
VF(0:2), IWP(0:2), LWP(0:1), STS
output hold (MIN = 0.25 x B1)
7.60 6.30 5.00 3.80 ns
B8 CLKOUT to A(0:31), BADDR(28:30)
RD/WR, BURST, D(0:31), DP(0:3),
valid (MAX = 0.25 x B1 + 6.3)
13.80 12.50 11.30 10.00 ns
B8a CLKOUT to TSIZ(0:1), REG, RSV,
AT(0:3), BDIP
, PTR valid (MAX = 0.25
x B1 + 6.3)
13.80 12.50 11.30 10.00 ns
B8b CLKOUT to BR, BG, VFLS(0:1),
VF(0:2), IWP(0:2), FRZ, LWP(0:1),
STS valid 4 (MAX = 0.25 x B1 + 6.3)
13.80 12.50 11.30 10.00 ns
B9 CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3),
TSIZ(0:1), REG, RSV, AT(0:3), PTR
High-Z (MAX = 0.25 x B1 + 6.3)
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
B11 CLKOUT to TS, BB assertion (MAX =
0.25 x B1 + 6.0)
7.60 13.60 6.30 12.30 5.00 11.00 3.80 9.80 ns
B11a CLKOUT to TA, BI assertion (when
driven by the memory controller or
PCMCIA interface) (MAX = 0.00 x B1 +
9.30 1)
2.50 9.30 2.50 9.30 2.50 9.30 2.50 9.80 ns
B12 CLKOUT to TS, BB negation (MAX =
0.25 x B1 + 4.8)
7.60 12.30 6.30 11.00 5.00 9.80 3.80 8.50 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
18 Freescale Semiconductor
Bus Signal Timing
B12a CLKOUT to TA, BI negation (when
driven by the memory controller or
PCMCIA interface) (MAX = 0.00 x B1 +
9.00)
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00 ns
B13 CLKOUT to TS, BB High-Z (MIN = 0.25
x B1)
7.60 21.60 6.30 20.30 5.00 19.00 3.80 14.00 ns
B13a CLKOUT to TA, BI High-Z (when driven
by the memory controller or PCMCIA
interface) (MIN = 0.00 x B1 + 2.5)
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B14 CLKOUT to TEA assertion (MAX =
0.00 x B1 + 9.00)
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00 ns
B15 CLKOUT to TEA High-Z (MIN = 0.00 x
B1 + 2.50)
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B16 TA, BI valid to CLKOUT (setup time)
(MIN = 0.00 x B1 + 6.00)
6.00 6.00 6.00 6.00 ns
B16a TEA, KR, RETRY, CR valid to CLKOUT
(setup time) (MIN = 0.00 x B1 + 4.5)
4.50 4.50 4.50 4.50 ns
B16b BB, BG, BR, valid to CLKOUT (setup
time) 2 (4 MIN = 0.00 x B1 + 0.00 )
4.00 4.00 4.00 4.00 ns
B17 CLKOUT to TA, TEA, BI, BB, BG, BR
valid (hold time) (MIN = 0.00 x B1 +
1.00 3)
1.00 1.00 1.00 2.00 ns
B17a CLKOUT to KR, RETRY, CR valid (hold
time) (MIN = 0.00 x B1 + 2.00)
2.00 2.00 2.00 2.00 ns
B18 D(0:31), DP(0:3) valid to CLKOUT
rising edge (setup time) 4 (MIN = 0.00
x B1 + 6.00)
6.00 6.00 6.00 6.00 ns
B19 CLKOUT rising edge to D(0:31),
DP(0:3) valid (hold time) 4 (MIN = 0.00
x B1 + 1.00 5)
1.00 1.00 1.00 2.00 ns
B20 D(0:31), DP(0:3) valid to CLKOUT
falling edge (setup time) 6(MIN = 0.00
x B1 + 4.00)
4.00 4.00 4.00 4.00 ns
B21 CLKOUT falling edge to D(0:31),
DP(0:3) valid (hold Time) 6 (MIN = 0.00
x B1 + 2.00)
2.00 2.00 2.00 2.00 ns
B22 CLKOUT rising edge to CS asserted
GPCM ACS = 00 (MAX = 0.25 x B1 +
6.3)
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
B22a CLKOUT falling edge to CS asserted
GPCM ACS = 10, TRLX = 0 (MAX =
0.00 x B1 + 8.00)
8.00 8.00 8.00 8.00 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 19
Bus Signal Timing
B22b CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0, EBDF = 0
(MAX = 0.25 x B1 + 6.3)
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
B22c CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0, EBDF = 1
(MAX = 0.375 x B1 + 6.6)
10.90 18.00 10.90 16.00 7.00 14.10 5.20 12.30 ns
B23 CLKOUT rising edge to CS negated
GPCM read access, GPCM write
access ACS = 00, TRLX = 0 & CSNT =
0 (MAX = 0.00 x B1 + 8.00)
2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns
B24 A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 0
(MIN = 0.25 x B1 - 2.00)
5.60 4.30 3.00 1.80 ns
B24a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 0
(MIN = 0.50 x B1 - 2.00)
13.20 10.50 8.00 5.60 ns
B25 CLKOUT rising edge to OE, WE(0:3)
asserted (MAX = 0.00 x B1 + 9.00)
9.00 9.00 9.00 9.00 ns
B26 CLKOUT rising edge to OE negated
(MAX = 0.00 x B1 + 9.00)
2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns
B27 A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 1
(MIN = 1.25 x B1 - 2.00)
35.90 29.30 23.00 16.90 ns
B27a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 1
(MIN = 1.50 x B1 - 2.00)
43.50 35.50 28.00 20.70 ns
B28 CLKOUT rising edge to WE(0:3)
negated GPCM write access CSNT =
0 (MAX = 0.00 x B1 + 9.00)
9.00 9.00 9.00 9.00 ns
B28a CLKOUT falling edge to WE(0:3)
negated GPCM write access TRLX =
0,1, CSNT = 1, EBDF = 0 (MAX = 0.25
x B1 + 6.80)
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
B28b CLKOUT falling edge to CS negated
GPCM write access TRLX = 0,1,
CSNT = 1, ACS = 10 or ACS = 11,
EBDF = 0 (MAX = 0.25 x B1 + 6.80)
14.30 13.00 11.80 10.50 ns
B28c CLKOUT falling edge to WE(0:3)
negated GPCM write access TRLX =
0, CSNT = 1 write access TRLX = 0,1,
CSNT = 1, EBDF = 1 (MAX = 0.375 x
B1 + 6.6)
10.90 18.00 10.90 18.00 7.00 14.30 5.20 12.30 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
20 Freescale Semiconductor
Bus Signal Timing
B28d CLKOUT falling edge to CS negated
GPCM write access TRLX = 0,1,
CSNT = 1, ACS = 10, or ACS = 11,
EBDF = 1 (MAX = 0.375 x B1 + 6.6)
18.00 18.00 14.30 12.30 ns
B29 WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access, CSNT = 0,
EBDF = 0 (MIN = 0.25 x B1 - 2.00)
5.60 4.30 3.00 1.80 ns
B29a WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access, TRLX = 0,
CSNT = 1, EBDF = 0 (MIN = 0.50 x B1
– 2.00)
13.20 10.50 8.00 5.60 ns
B29b CS negated to D(0:31), DP(0:3), High
Z GPCM write access, ACS = 00,
TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x
B1– 2.00)
5.60 4.30 3.00 1.80 ns
B29c CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT
= 1, ACS = 10, or ACS = 11, EBDF = 0
(MIN = 0.50 x B1 – 2.00)
13.20 10.50 8.00 5.60 ns
B29d WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access, TRLX = 1,
CSNT = 1, EBDF = 0 (MIN = 1.50 x B1
– 2.00)
43.50 35.50 28.00 20.70 ns
B29e CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT
= 1, ACS = 10, or ACS = 11, EBDF = 0
(MIN = 1.50 x B1 – 2.00)
43.50 35.50 28.00 20.70 ns
B29f WE(0:3) negated to D(0:31), DP(0:3)
High Z GPCM write access, TRLX = 0,
CSNT = 1, EBDF = 1 (MIN = 0.375 x
B1 – 6.30)
5.00 3.00 1.10 0.00 ns
B29g CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 0, CSNT
= 1 ACS = 10 or ACS = 11, EBDF = 1
(MIN = 0.375 x B1 – 6.30)
5.00 3.00 1.10 0.00 ns
B29h WE(0:3) negated to D(0:31), DP(0:3)
High Z GPCM write access, TRLX = 1,
CSNT = 1, EBDF = 1 (MIN = 0.375 x
B1 – 3.30)
38.40 31.10 24.20 17.50 ns
B29i CS negated to D(0:31), DP(0:3) High-Z
GPCM write access, TRLX = 1, CSNT
= 1, ACS = 10 or ACS = 11, EBDF = 1
(MIN = 0.375 x B1 – 3.30)
38.40 31.10 24.20 17.50 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 21
Bus Signal Timing
B30 CS, WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access 7 (MIN = 0.25 x B1 – 2.00)
5.60 4.30 3.00 1.80 ns
B30a WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM, write
access, TRLX = 0, CSNT = 1, CS
negated to A(0:31) invalid GPCM write
access TRLX = 0, CSNT =1 ACS = 10,
or ACS == 11, EBDF = 0 (MIN = 0.50 x
B1 – 2.00)
13.20 10.50 8.00 5.60 ns
B30b WE(0:3) negated to A(0:31) invalid
GPCM BADDR(28:30) invalid GPCM
write access, TRLX = 1, CSNT = 1. CS
negated to A(0:31) invalid GPCM write
access TRLX = 1, CSNT = 1, ACS =
10, or ACS == 11 EBDF = 0 (MIN =
1.50 x B1 – 2.00)
43.50 35.50 28.00 20.70 ns
B30c WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access, TRLX = 0, CSNT = 1. CS
negated to A(0:31) invalid GPCM write
access, TRLX = 0, CSNT = 1 ACS =
10, ACS == 11, EBDF = 1 (MIN = 0.375
x B1 – 3.00)
8.40 6.40 4.50 2.70 ns
B30d WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access TRLX = 1, CSNT =1, CS
negated to A(0:31) invalid GPCM write
access TRLX = 1, CSNT = 1, ACS = 10
or 11, EBDF = 1
38.67 31.38 24.50 17.83 ns
B31 CLKOUT falling edge to CS valid, as
requested by control bit CST4 in the
corresponding word in the UPM (MAX
= 0.00 X B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B31a CLKOUT falling edge to CS valid, as
requested by control bit CST1 in the
corresponding word in the UPM (MAX
= 0.25 x B1 + 6.80)
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
B31b CLKOUT rising edge to CS valid, as
requested by control bit CST2 in the
corresponding word in the UPM (MAX
= 0.00 x B1 + 8.00)
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B31c CLKOUT rising edge to CS valid, as
requested by control bit CST3 in the
corresponding word in the UPM (MAX
= 0.25 x B1 + 6.30)
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
22 Freescale Semiconductor
Bus Signal Timing
B31d CLKOUT falling edge to CS valid, as
requested by control bit CST1 in the
corresponding word in the UPM EBDF
= 1 (MAX = 0.375 x B1 + 6.6)
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns
B32 CLKOUT falling edge to BS valid, as
requested by control bit BST4 in the
corresponding word in the UPM (MAX
= 0.00 x B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B32a CLKOUT falling edge to BS valid, as
requested by control bit BST1 in the
corresponding word in the UPM, EBDF
= 0 (MAX = 0.25 x B1 + 6.80)
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
B32b CLKOUT rising edge to BS valid, as
requested by control bit BST2 in the
corresponding word in the UPM (MAX
= 0.00 x B1 + 8.00)
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
B32c CLKOUT rising edge to BS valid, as
requested by control bit BST3 in the
corresponding word in the UPM (MAX
= 0.25 x B1 + 6.80)
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
B32d CLKOUT falling edge to BS valid- as
requested by control bit BST1 in the
corresponding word in the UPM, EBDF
= 1 (MAX = 0.375 x B1 + 6.60)
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns
B33 CLKOUT falling edge to GPL valid, as
requested by control bit GxT4 in the
corresponding word in the UPM (MAX
= 0.00 x B1 + 6.00)
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
B33a CLKOUT rising edge to GPL valid, as
requested by control bit GxT3 in the
corresponding word in the UPM (MAX
= 0.25 x B1 + 6.80)
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
B34 A(0:31), BADDR(28:30), and D(0:31)
to CS valid, as requested by control bit
CST4 in the corresponding word in the
UPM (MIN = 0.25 x B1 - 2.00)
5.60 4.30 3.00 1.80 ns
B34a A(0:31), BADDR(28:30), and D(0:31)
to CS valid, as requested by control bit
CST1 in the corresponding word in the
UPM (MIN = 0.50 x B1 – 2.00)
13.20 10.50 8.00 5.60 ns
B34b A(0:31), BADDR(28:30), and D(0:31)
to CS valid, as requested by CST2 in
the corresponding word in UPM (MIN =
0.75 x B1 – 2.00)
20.70 16.70 13.00 9.40 ns
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 23
Bus Signal Timing
B35 A(0:31), BADDR(28:30) to CS valid, as
requested by control bit BST4 in the
corresponding word in the UPM (MIN =
0.25 x B1 – 2.00)
5.60 4.30 3.00 1.80 ns
B35a A(0:31), BADDR(28:30), and D(0:31)
to BS valid, as Requested by BST1 in
the corresponding word in the UPM
(MIN = 0.50 x B1 – 2.00)
13.20 10.50 8.00 5.60 ns
B35b A(0:31), BADDR(28:30), and D(0:31)
to BS valid, as requested by control bit
BST2 in the corresponding word in the
UPM (MIN = 0.75 x B1 – 2.00)
20.70 16.70 13.00 9.40 ns
B36 A(0:31), BADDR(28:30), and D(0:31)
to GPL valid as requested by control bit
GxT4 in the corresponding word in the
UPM (MIN = 0.25 x B1 – 2.00)
5.60 4.30 3.00 1.80 ns
B37 UPWAIT valid to CLKOUT falling
edge 8 (MIN = 0.00 x B1 + 6.00)
6.00 6.00 6.00 6.00 ns
B38 CLKOUT falling edge to UPWAIT
valid8 (MIN = 0.00 x B1 + 1.00)
1.00 1.00 1.00 1.00 ns
B39 AS valid to CLKOUT rising edge 9 (MIN
= 0.00 x B1 + 7.00)
7.00 7.00 7.00 7.00 ns
B40 A(0:31), TSIZ(0:1), RD/WR, BURST,
valid to CLKOUT rising edge (MIN =
0.00 x B1 + 7.00)
7.00 7.00 7.00 7.00 ns
B41 TS valid to CLKOUT rising edge (setup
time) (MIN = 0.00 x B1 + 7.00)
7.00 7.00 7.00 7.00 ns
B42 CLKOUT rising edge to TS valid (hold
time) (MIN = 0.00 x B1 + 2.00)
2.00 2.00 2.00 2.00 ns
B43 AS negation to memory controller
signals negation (MAX = TBD)
TBD TBD TBD TBD ns
1
For part speeds above 50 MHz, use 9.80 ns for B11a.
2
The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter.
The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter.
3
For part speeds above 50 MHz, use 2 ns for B17.
4
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal
is asserted.
5
For part speeds above 50 MHz, use 2 ns for B19.
6
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for
read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
7
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
Table 9. Bus Operation Timings (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
24 Freescale Semiconductor
Bus Signal Timing
Figure 5 shows the contr ol timing diagram.
Figure 5. Control Timing
8
The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in
B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.
9
The AS signal is considered asynchronous to CLKOUT. The timing B39 is specified in order to allow the behavior
specified in Figure 23.
CLKOUT
Outputs
A
B
2.0 V
0.8 V 0.8 V
2.0 V
2.0 V
0.8 V
2.0 V
0.8 V
Outputs 2.0 V
0.8 V
2.0 V
0.8 V
B
A
Inputs 2.0 V
0.8 V
2.0 V
0.8 V
D
C
Inputs 2.0 V
0.8 V
2.0 V
0.8 V
C
D
AMaximum output delay specification
B Minimum output hold time
C Minimum input setup time specification
D Minimum input hold time specification
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 25
Bus Signal Timing
Figure 6 shows the timing fo r the external clock.
Figure 6. External Clock Timing
Figure 7 shows the timing fo r the synchronous output signals.
Figure 7. Synchronous Output Signals Timing
CLKOUT
B1
B5
B3
B4
B1
B2
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7 B9
B8a
B9B7a
B8b
B7b
MPC866/MPC859 Hardware Specifications, Rev. 2
26 Freescale Semiconductor
Bus Signal Timing
Figure 8 shows the timing fo r the synchronous active pull-up and open-drain output signals.
Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing
Figure 9 shows the timing fo r the synchronous input signals.
Figure 9. Synchronous Input Signals Timing
CLKOUT
TS, BB
TA, BI
TEA
B13
B12B11
B11a B12a
B13a
B15
B14
CLKOUT
TA, BI
TEA, KR,
RETRY, CR
BB, BG, BR
B16
B17
B16a
B17a
B16b
B17
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 27
Bus Signal Timing
Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the
UPM in the memory controller.
Figure 10. Input Data Timing in Normal Case
Figure 11 shows the timi ng for the input data contr olled by the UPM for data beats where DLT3 = 1 in the UPM
RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1
CLKOUT
TA
D[0:31],
DP[0:3]
B16
B17
B19
B18
CLKOUT
TA
D[0:31],
DP[0:3]
B20
B21
MPC866/MPC859 Hardware Specifications, Rev. 2
28 Freescale Semiconductor
Bus Signal Timing
Figure 12 throug h Figure 15 show the timing for the exter nal bus read controlled by various GPCM factor s.
Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11 B12
B23
B8
B22
B26
B19
B18
B25
B28
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 29
Bus Signal Timing
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10)
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a B23
B26
B19B18
B25B24
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B22bB8
B22c B23
B24a B25 B26
B19B18
MPC866/MPC859 Hardware Specifications, Rev. 2
30 Freescale Semiconductor
Bus Signal Timing
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a
B27
B27a
B22b B22c B19B18
B26
B23
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 31
Bus Signal Timing
Figure 16 throug h Figure 18 show the timing for the external bus write controlled by various GPCM fa ctors.
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)
CLKOUT
A[0:31]
CSx
WE[0:3]
OE
TS
D[0:31],
DP[0:3]
B11
B8
B22 B23
B12
B30
B28B25
B26
B8 B9
B29
B29b
MPC866/MPC859 Hardware Specifications, Rev. 2
32 Freescale Semiconductor
Bus Signal Timing
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)
B23
B30a B30c
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B8
B22
B12
B28b B28d
B25
B26
B8
B28a
B9
B28c
B29c B29g
B29a B29f
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 33
Bus Signal Timing
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)
B23B22
B8
B12B11
CLKOUT
A[0:31]
CSx
WE[0:3]
TS
OE
D[0:31],
DP[0:3]
B30dB30b
B28b B28d
B25 B29e B29i
B26 B29d B29h
B28a B28c B9B8
B29b
MPC866/MPC859 Hardware Specifications, Rev. 2
34 Freescale Semiconductor
Bus Signal Timing
Figure 19 shows the timing for the external bus con trolled by the UPM.
Figure 19. External Bus Timing (UPM Controlled Signals)
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
A[0:31]
B31c
B31b
B34a
B32
B32a B32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 35
Bus Signal Timing
Figure 20 shows the timing for the asynchrono us asserted UPWAIT signal control led by the UPM.
Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
Figure 21 shows the timing for the asynchrono us negated UPWAIT signa l controlled by the UPM.
Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
MPC866/MPC859 Hardware Specifications, Rev. 2
36 Freescale Semiconductor
Bus Signal Timing
Figure 22 shows the timing for the synchronous ext ernal master access controlled by the GPCM.
Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
CLKOUT
TS
A[0:31],
TSIZ[0:1],
R/W, BURST
CSx
B41 B42
B40
B22
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 37
Bus Signal Timing
Figure 23 shows the timing for the asynchrono us exter nal master memory access controlle d by the GPCM.
Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 24 shows the timing for the asynchrono us exter nal master contr ol signals negation.
Figure 24. Asynchronous External Master—Control Signals Negation Timing
Table 10 shows the interrupt timing for the MPC866/859.
Table 10. Interrupt Timing
Num Characteristic 1
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference
to the CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has
no direct relation with the total system interrupt latency that the MPC866/859 is able to support.
All Frequencies
Unit
Min Max
I39 IRQx valid to CLKOUT rising edge (setup time) 6.00 ns
I40 IRQx hold time after CLKOUT 2.00 ns
I41 IRQx pulse width low 3.00 ns
I42 IRQx pulse width high 3.00 ns
I43 IRQx edge-to-edge time 4xTCLOCKOUT ——
CLKOUT
AS
A[0:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
AS
CSx, WE[0:3],
OE, GPLx,
BS[0:3]
B43
MPC866/MPC859 Hardware Specifications, Rev. 2
38 Freescale Semiconductor
Bus Signal Timing
Figure 25 shows the interrupt detection timing for the external le vel-sensitive lines.
Figure 25. Interrupt Detection Timing for External Level Sensitive Lines
Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.
Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines
Table 11 shows the PCMCIA timing for the MPC866/859.
Table 11. PCMCIA Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
P44
A(0:31), REG valid to PCMCIA
Strobe asserted 1 (MIN = 0.75 x B1
– 2.00)
20.70 16.70 13.00 9.40 ns
P45 A(0:31), REG valid to ALE
negation1 (MIN = 1.00 x B1 – 2.00)
28.30 23.00 18.00 13.20 ns
P46 CLKOUT to REG valid (MAX = 0.25
x B1 + 8.00)
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
P47 CLKOUT to REG invalid (MIN =
0.25 x B1 + 1.00)
8.60 7.30 6.00 4.80 ns
P48 CLKOUT to CE1, CE2 asserted
(MAX = 0.25 x B1 + 8.00)
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
P49 CLKOUT to CE1, CE2 negated
(MAX = 0.25 x B1 + 8.00)
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
CLKOUT
IRQx
I39
I40
CLKOUT
IRQx
I41 I42
I43
I43
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 39
Bus Signal Timing
P50
CLKOUT to PCOE, IORD, PCWE,
IOWR assert time (MAX = 0.00 x
B1 + 11.00)
11.00 11.00 11.00 11.00 ns
P51
CLKOUT to PCOE, IORD, PCWE,
IOWR negate time (MAX = 0.00 x
B1 + 11.00)
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns
P52 CLKOUT to ALE assert time (MAX
= 0.25 x B1 + 6.30)
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
P53 CLKOUT to ALE negate time (MAX
= 0.25 x B1 + 8.00)
15.60 14.30 13.00 11.80 ns
P54 PCWE, IOWR negated to D(0:31)
invalid1 (MIN = 0.25 x B1 – 2.00)
5.60 4.30 3.00 1.80 ns
P55
WAITA and WAITB valid to
CLKOUT rising edge1 (MIN = 0.00
x B1 + 8.00)
8.00 8.00 8.00 8.00 ns
P56
CLKOUT rising edge to WAITA and
WAITB invalid1 (MIN = 0.00 x B1 +
2.00)
2.00 2.00 2.00 2.00 ns
1
PSST = 1. Otherwise, add PSST times cycle time.
PSHT = 0. Otherwise, add PSHT times cycle time.
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA
current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See
PCMCIA Interface in the
MPC866 PowerQUICC User’s Manual
.
Table 11. PCMCIA Timing (continued)
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
40 Freescale Semiconductor
Bus Signal Timing
Figure 27 s ho w s the PCM CIA access cy cle tim ing fo r the ext ernal bus rea d .
Figure 27. PCMCIA Access Cycles Timing External Bus Read
CLKOUT
A[0:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19B18
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 41
Bus Signal Timing
Figure 28 s ho w s the PCM CIA access cy cle tim ing fo r the ext ernal bus w rite .
Figure 28. PCMCIA Access Cycles Timing External Bus Write
Figure 29 sho ws the PC MCIA WAIT signals detection timing.
Figure 29. PCMCIA WAIT Signals Detection Timing
CLKOUT
A[0:31]
REG
CE1/CE2
PCWE, IOWR
TS
D[0:31]
ALE
B9B8
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
P54
CLKOUT
WAITx
P55
P56
MPC866/MPC859 Hardware Specifications, Rev. 2
42 Freescale Semiconductor
Bus Signal Timing
Table 12 shows the PCMCIA por t timing for the MPC866/859.
Figure 30 shows the PCMCIA output port timing for the MPC866/859.
Figure 30. PCMCIA Output Port Timing
Figure 31 shows the PCMCIA output port timing for the MPC866/859.
Figure 31. PCMCIA Input Port Timing
Table 12. PCMCIA Port Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
P57 CLKOUT to OPx, valid (MAX = 0.00 x B1
+ 19.00)
19.00 19.00 19.00 19.00 ns
P58 HRESET negated to OPx drive 1(MIN =
0.75 x B1 + 3.00)
1
OP2 and OP3 only.
25.70 21.70 18.00 14.40 ns
P59 IP_Xx valid to CLKOUT rising edge (MIN
= 0.00 x B1 + 5.00)
5.00 5.00 5.00 5.00 ns
P60 CLKOUT rising edge to IP_Xx invalid
(MIN = 0.00 x B1 + 1.00)
1.00 1.00 1.00 1.00 ns
CLKOUT
HRESET
Output
Signals
OP2, OP3
P57
P58
CLKOUT
Input
Signals
P59
P60
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 43
Bus Signal Timing
Table 13 shows the debug port tim ing for the MPC866/859.
Figure 32 shows the input timing for the debug port clock.
Figure 32. Debug Port Clock Input Timing
Figure 33 shows the timing for the debug port.
Figure 33. Debug Port Timings
Table 13. Debug Port Timing
Num Characteristic
All Frequencies
Unit
Min Max
D61 DSCK cycle time 3xTCLOCKOUT
D62 DSCK clock pulse width 1.25xTCLOCKOUT
D63 DSCK rise and fall times 0.00 3.00 ns
D64 DSDI input data setup time 8.00 ns
D65 DSDI data hold time 5.00 ns
D66 DSCK low to DSDO data valid 0.00 15.00 ns
D67 DSCK low to DSDO invalid 0.00 2.00 ns
DSCK
D61
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
MPC866/MPC859 Hardware Specifications, Rev. 2
44 Freescale Semiconductor
Bus Signal Timing
Table 14 shows the reset timing for the MPC866/859.
Table 14. Reset Timing
Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
R69 CLKOUT to HRESET high impedance
(MAX = 0.00 x B1 + 20.00)
20.00 20.00 20.00 20.00 ns
R70 CLKOUT to SRESET high impedance
(MAX = 0.00 x B1 + 20.00)
20.00 20.00 20.00 20.00 ns
R71 RSTCONF pulse width (MIN = 17.00 x
B1)
515.20 425.00 340.00 257.60 ns
R72 ——————
R73
Configuration data to HRESET rising
edge setup time (MIN = 15.00 x B1 +
50.00)
504.50 425.00 350.00 277.30 ns
R74
Configuration data to RSTCONF rising
edge setup time (MIN = 0.00 x B1 +
350.00)
350.00 350.00 350.00 350.00 ns
R75
Configuration data hold time after
RSTCONF negation (MIN = 0.00 x B1 +
0.00)
0.00 0.00 0.00 0.00 ns
R76
Configuration data hold time after
HRESET negation (MIN = 0.00 x B1 +
0.00)
0.00 0.00 0.00 0.00 ns
R77
HRESET and RSTCONF asserted to
data out drive (MAX = 0.00 x B1 +
25.00)
25.00 25.00 25.00 25.00 ns
R78 RSTCONF negated to data out high
impedance (MAX = 0.00 x B1 + 25.00)
25.00 25.00 25.00 25.00 ns
R79
CLKOUT of last rising edge before chip
three-states HRESET to data out high
impedance (MAX = 0.00 x B1 + 25.00)
25.00 25.00 25.00 25.00 ns
R80 DSDI, DSCK setup (MIN = 3.00 x B1) 90.90 75.00 60.00 45.50 ns
R81 DSDI, DSCK hold time (MIN = 0.00 x B1
+ 0.00)
0.00 0.00 0.00 0.00 ns
R82
SRESET negated to CLKOUT rising
edge for DSDI and DSCK sample (MIN
= 8.00 x B1)
242.40 200.00 160.00 121.20 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 45
Bus Signal Timing
Figure 34 shows the reset timing for the data bus configuration.
Figure 34. Reset Timing—Configuration from Data Bus
Figure 35 shows the reset timing for the data bus weak drive duri ng configuration.
Figure 35. Reset Timing—Data Bus Weak Drive During Configuration
HRESET
RSTCONF
D[0:31] (IN)
R71
R74
R73
R75
R76
CLKOUT
HRESET
D[0:31] (OUT)
(Weak)
RSTCONF
R69
R79
R77 R78
MPC866/MPC859 Hardware Specifications, Rev. 2
46 Freescale Semiconductor
IEEE 1149.1 Electrical Specifications
Figure 36 shows the reset timing for the debug port configur ation.
Figure 36. Reset Timing—Debug Port Configuration
11 IEEE 1149.1 Electrical Specifications
Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 thr ough Figure 40.
Table 15. JTAG Timing
Num Characteristic
All Frequencies
Unit
Min Max
J82 TCK cycle time 100.00 ns
J83 TCK clock pulse width measured at 1.5 V 40.00 ns
J84 TCK rise and fall times 0.00 10.00 ns
J85 TMS, TDI data setup time 5.00 ns
J86 TMS, TDI data hold time 25.00 ns
J87 TCK low to TDO data valid 27.00 ns
J88 TCK low to TDO data invalid 0.00 ns
J89 TCK low to TDO high impedance 20.00 ns
J90 TRST assert time 100.00 ns
J91 TRST setup time to TCK low 40.00 ns
J92 TCK falling edge to output valid 50.00 ns
J93 TCK falling edge to output valid out of high impedance 50.00 ns
J94 TCK falling edge to output high impedance 50.00 ns
J95 Boundary scan input valid to TCK rising edge 50.00 ns
J96 TCK rising edge to boundary scan input invalid 50.00 ns
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80R80
R81 R81
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 47
IEEE 1149.1 Electrical Specifications
Figure 37. JTAG Test Clock Input Timing
Figure 38. JTAG Test Access Port Timing Diagram
Figure 39. JTAG TRST Timing Diagram
TCK
J82 J83
J82 J83
J84 J84
TCK
TMS, TDI
TDO
J85
J86
J87
J88 J89
TCK
TRST
J91
J90
MPC866/MPC859 Hardware Specifications, Rev. 2
48 Freescale Semiconductor
CPM Electrical Characteristics
Figure 40. Boundary Scan (JTAG) Timing Diagram
12 CPM Electrical Characteristics
This section provides th e AC a nd DC electr ical specific ations for the communicati ons proce ssor module ( CPM) of
the MPC866/859.
12.1 PIP/PIO AC Electrical Specifications
Table 16 shows the PIP/PIO AC tim ings as shown in Figure 41 through Figure 45.
Table 16. PIP/PIO Timing
Num Characteristic
All Frequencies
Unit
Min Max
21 Data-in setup time to STBI low 0 ns
22 Data-In hold time to STBI high 2.5 – t3 1
1
t3 = Specification 23
—clk
23 STBI pulse width 1.5 clk
24 STBO pulse width 1 clk – 5ns ns
25 Data-out setup time to STBO low 2 clk
26 Data-out hold time from STBO high 5 clk
27 STBI low to STBO low (Rx interlock) 2 clk
28 STBI low to STBO high (Tx interlock) 2 clk
29 Data-in setup time to clock high 15 ns
30 Data-in hold time from clock high 7.5 ns
31 Clock low to data-out valid (CPU writes data, control, or direction) 25 ns
TCK
Output
Signals
Output
Signals
Output
Signals
J92 J94
J93
J95 J96
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 49
CPM Electrical Characteristics
Figure 41. PIP Rx (Interlock Mode) Timing Diagram
Figure 42. PIP Tx (Interlock Mode) Timing Diagram
Figure 43. PIP Rx (Pulse Mode) Timing Diagram
DATA-IN
STBI
23
24
22
STBO
27
21
DATA-OUT
24
23
26
28
25
STBO
(Output)
STBI
(Input)
DATA-IN
23
2221
STBI
(Input)
STBO
(Output)
24
MPC866/MPC859 Hardware Specifications, Rev. 2
50 Freescale Semiconductor
CPM Electrical Characteristics
Figure 44. PIP TX (Pulse Mode) Timing Diagram
Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram
12.2 Port C Interrupt AC Electrical Specifications
Table 17 shows timings for port C interrupts.
Figure 46 shows the port C interrupt detection timing.
Table 17. Port C Interrupt Timing
Num Characteristic
33.34 MHz
Unit
Min Max
35 Port C interrupt pulse width low (edge-triggered mode) 55 ns
36 Port C interrupt minimum time between active edges 55 ns
DATA-OUT
24
2625
STBO
(Output)
STBI
(Input)
23
CLKO
DATA-IN
29
31
30
DATA-OUT
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 51
CPM Electrical Characteristics
Figure 46. Port C Interrupt Detection Timing
12.3 IDMA Controller AC Electrical Specifications
Table 18 shows the IDMA controlle r timings as shown in Figure 47 through Figure 50.
Figure 47. IDMA External Requests Timing Diagram
Table 18. IDMA Controller Timing
Num Characteristic
All Frequencies
Unit
Min Max
40 DREQ setup time to clock high 7 ns
41 DREQ hold time from clock high 3 ns
42 SDACK assertion delay from clock high 12 ns
43 SDACK negation delay from clock low 12 ns
44 SDACK negation delay from TA low 20 ns
45 SDACK negation delay from clock high 15 ns
46 TA assertion to falling edge of the clock setup time (applies to external TA)7 ns
Port C
35
36
(Input)
41
40
DREQ
(Input)
CLKO
(Output)
MPC866/MPC859 Hardware Specifications, Rev. 2
52 Freescale Semiconductor
CPM Electrical Characteristics
Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA
Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA
DATA
42
46
43
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Input)
SDACK
DATA
42 44
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 53
CPM Electrical Characteristics
Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA
12.4 Baud Rate Generator AC Electrical Specifications
Table 19 shows the baud rat e generator timi ngs as shown in Figure 51.
Figure 51. Baud Rate Generator Timing Diagram
Table 19. Baud Rate Generator Timing
Num Characteristic
All Frequencies
Unit
Min Max
50 BRGO rise and fall time 10 ns
51 BRGO duty cycle 40 60 %
52 BRGO cycle 40 ns
DATA
42 45
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
52
50
51
BRGOX
50
51
MPC866/MPC859 Hardware Specifications, Rev. 2
54 Freescale Semiconductor
CPM Electrical Characteristics
12.5 Timer AC Electrical Specifications
Table 20 shows the gener al-purpos e timer timings as shown in Figure 52.
Figure 52. CPM General-Purpose Timers Timing Diagram
12.6 Serial Interface AC Electrical Specifications
Table 21 shows the seria l interf ace timings as shown in Figure 53 through Figure 57.
Table 20. Timer Timing
Num Characteristic
All Frequencies
Unit
Min Max
61 TIN/TGATE rise and fall time 10 ns
62 TIN/TGATE low time 1 clk
63 TIN/TGATE high time 2 clk
64 TIN/TGATE cycle time 3 clk
65 CLKO low to TOUT valid 3 25 ns
Table 21. SI Timing
Num Characteristic
All Frequencies
Unit
Min Max
70 L1RCLK, L1TCLK frequency (DSC = 0) 1, 2 SYNCCLK/2.5 MHz
71 L1RCLK, L1TCLK width low (DSC = 0) 2P + 10 ns
71a L1RCLK, L1TCLK width high (DSC = 0) 3 P + 10 ns
72 L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time 15.00 ns
73 L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC
setup time)
20.00 ns
CLKO
TIN/TGATE
(Input)
TOUT
(Output)
64
65
61
626361
60
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 55
CPM Electrical Characteristics
74 L1CLK edge to L1RSYNC, L1TSYNC, invalid
(SYNC hold time)
35.00 ns
75 L1RSYNC, L1TSYNC rise/fall time 15.00 ns
76 L1RXD valid to L1CLK edge (L1RXD setup time) 17.00 ns
77 L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00 ns
78 L1CLK edge to L1ST(1–4) valid 4 10.00 45.00 ns
78A L1SYNC valid to L1ST(1–4) valid 10.00 45.00 ns
79 L1CLK edge to L1ST(1–4) invalid 10.00 45.00 ns
80 L1CLK edge to L1TXD valid 10.00 55.00 ns
80A L1TSYNC valid to L1TXD valid 410.00 55.00 ns
81 L1CLK edge to L1TXD high impedance 0.00 42.00 ns
82 L1RCLK, L1TCLK frequency (DSC =1) 16.00 or SYNCCLK/2 MHz
83 L1RCLK, L1TCLK width low (DSC =1) P + 10 ns
83a L1RCLK, L1TCLK width high (DSC = 1)3P + 10 ns
84 L1CLK edge to L1CLKO valid (DSC = 1) 30.00 ns
85 L1RQ valid before falling edge of L1TSYNC41.00 L1TCLK
86 L1GR setup time242.00 ns
87 L1GR hold time 42.00 ns
88 L1CLK edge to L1SYNC valid (FSD = 00) CNT =
0000, BYT = 0, DSC = 0)
—0.00ns
1
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
Table 21. SI Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
56 Freescale Semiconductor
CPM Electrical Characteristics
Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
L1RXD
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
71
72
70 71a
RFSD=1
75
73
74 77
78
76
79
BIT0
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 57
CPM Electrical Characteristics
Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)
L1RXD
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
RFSD=1
75
73
74 77
78
76
79
83a
82
L1CLKO
(Output)
84
BIT0
MPC866/MPC859 Hardware Specifications, Rev. 2
58 Freescale Semiconductor
CPM Electrical Characteristics
Figure 55. SI Transmit Timing Diagram (DSC = 0)
L1TXD
(Output)
L1TCLK
(FE=0, CE=0)
(Input)
L1TCLK
(FE=1, CE=1)
(Input)
L1TSYNC
(Input)
L1ST(4-1)
(Output)
71 70
72
73
75
74
80a
80
78
TFSD=0
81
79
BIT0
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 59
CPM Electrical Characteristics
Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(Output)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKO
(Output)
84
BIT0
78
81
MPC866/MPC859 Hardware Specifications, Rev. 2
60 Freescale Semiconductor
CPM Electrical Characteristics
Figure 57. IDL Timing
B17 B16 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 MB15
L1RXD
(Input)
L1TXD
(Output)
L1ST(4-1)
(Output)
L1RQ
(Output)
73
77
12345678910 11 12 13 14 15 16 17 18 19 20
74
80
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
71
71
L1GR
(Input)
78
85
72
76
87
86
L1RSYNC
(Input)
L1RCLK
(Input)
81
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 61
CPM Electrical Characteristics
12.7 SCC in NMSI Mode Electrical Specifications
Table 22 sho w s the N MS I ex tern al cloc k timin gs .
Table 23 shows the NMSI internal clock timings.
Table 22. NMSI External Clock Timings
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLK1 and TCLK1 width high 1
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.
1/SYNCCLK ns
101 RCLK1 and TCLK1 width low 1/SYNCCLK +5 ns
102 RCLK1 and TCLK1 rise/fall time 15.00 ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 50.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 50.00 ns
105 CTS1 setup time to TCLK1 rising edge 5.00 ns
106 RXD1 setup time to RCLK1 rising edge 5.00 ns
107 RXD1 hold time from RCLK1 rising edge 2
2
Also applies to CD and CTS hold time when they are used as an external sync signal.
5.00 ns
108 CD1 setup time to RCLK1 rising edge 5.00 ns
Table 23. NMSI Internal Clock Timings
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLK1 and TCLK1 frequency 1
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.
0.00 SYNCCLK/3 MHz
102 RCLK1 and TCLK1 rise/fall time ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 30.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 30.00 ns
105 CTS1 setup time to TCLK1 rising edge 40.00 ns
106 RXD1 setup time to RCLK1 rising edge 40.00 ns
107 RXD1 hold time from RCLK1 rising edge 2
2
Also applies to CD and CTS hold time when they are used as an external sync signals.
0.00 ns
108 CD1 setup time to RCLK1 rising edge 40.00 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
62 Freescale Semiconductor
CPM Electrical Characteristics
Figure 58 throug h Figure 60 show the NMSI timings.
Figure 58. SCC NMSI Receive Timing Diagram
Figure 59. SCC NMSI Transmit Timing Diagram
RCLK1
CD1
(Input)
102
100
107
108
107
RxD1
(Input)
CD1
(SYNC Input)
102 101
106
TCLK1
CTS1
(Input)
102
100
104
107
TxD1
(Output)
CTS1
(SYNC Input)
102 101
RTS1
(Output)
105
103
104
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 63
CPM Electrical Characteristics
Figure 60. HDLC Bus Timing Diagram
12.8 Ethernet Electrical Specifications
Table 24 shows the Etherne t timings as shown in Figure 61 through Figure 65.
Table 24. Ethernet Timing
Num Characteristic
All Frequencies
Unit
Min Max
120 CLSN width high 40 ns
121 RCLK1 rise/fall time 15 ns
122 RCLK1 width low 40 ns
123 RCLK1 clock period 1 80 120 ns
124 RXD1 setup time 20 ns
125 RXD1 hold time 5 ns
126 RENA active delay (from RCLK1 rising edge of the last data bit) 10 ns
127 RENA width low 100 ns
128 TCLK1 rise/fall time 15 ns
129 TCLK1 width low 40 ns
130 TCLK1 clock period 199 101 ns
131 TXD1 active delay (from TCLK1 rising edge) 50 ns
132 TXD1 inactive delay (from TCLK1 rising edge) 6.5 50 ns
133 TENA active delay (from TCLK1 rising edge) 10 50 ns
TCLK1
CTS1
(Echo Input)
102
100
104
TxD1
(Output)
102 101
RTS1
(Output)
103
104107
105
MPC866/MPC859 Hardware Specifications, Rev. 2
64 Freescale Semiconductor
CPM Electrical Characteristics
Figure 61. Ethernet Collision Timing Diagram
Figure 62. Ethernet Receive Timing Diagram
134 TENA inactive delay (from TCLK1 rising edge) 10 50 ns
135 RSTRT active delay (from TCLK1 falling edge) 10 50 ns
136 RSTRT inactive delay (from TCLK1 falling edge) 10 50 ns
137 REJECT width low 1 CLK
138 CLKO1 low to SDACK asserted 2 —20ns
139 CLKO1 low to SDACK negated 2—20ns
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.
2
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Table 24. Ethernet Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
CLSN(CTS1)
120
(Input)
RCLK1
121
RxD1
(Input)
121
RENA(CD1)
(Input)
125
124 123
127
126
Last Bit
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 65
CPM Electrical Characteristics
Figure 63. Ethernet Transmit Timing Diagram
Figure 64. CAM Interface Receive Start Timing Diagram
Figure 65. CAM Interface REJECT Timing Diagram
12.9 SMC Transparent AC Electrical Specifications
Table 25 shows the SMC transparent timings as shown in Figure 66.
TCLK1
128
TxD1
(Output)
128
TENA(RTS1)
(Input)
Notes:
Transmit clock invert (TCI) bit in GSMR is set.
If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the
CSL bit is set in the buffer descriptor at the end of the frame transmission.
1.
2.
RENA(CD1)
(Input)
133 134
132
131 121
129
RCLK1
RxD1
(Input)
RSTRT
(Output)
0
136
125
1 1 BIT1 BIT2
Start Frame Delimiter
REJECT
137
MPC866/MPC859 Hardware Specifications, Rev. 2
66 Freescale Semiconductor
CPM Electrical Characteristics
Figure 66. SMC Transparent Timing Diagram
Table 25. SMC Transparent Timing
Num Characteristic
All Frequencies
Unit
Min Max
150 SMCLK clock period 1
1
Sync CLK must be at least twice as fast as SMCLK.
100 ns
151 SMCLK width low 50 ns
151A SMCLK width high 50 ns
152 SMCLK rise/fall time 15 ns
153 SMTXD active delay (from SMCLK falling edge) 10 50 ns
154 SMRXD/SMSYNC setup time 20 ns
155 RXD1/SMSYNC hold time 5 ns
SMCLK
SMRXD
(Input)
152
150
SMTXD
(Output)
152 151
SMSYNC
151A
154 153
155
154
155
NOTE 1
NOTE:
This delay is equal to an integer number of character-length clocks.1.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 67
CPM Electrical Characteristics
12.10SPI Master AC Electrical Specifications
Table 26 shows the SPI master timings as shown in Figure 67 and Figure 68.
Figure 67. SPI Master (CP = 0) Timing Diagram
Table 26. SPI Master Timing
Num Characteristic
All Frequencies
Unit
Min Max
160 MASTER cycle time 4 1024 tcyc
161 MASTER clock (SCK) high or low time 2 512 tcyc
162 MASTER data setup time (inputs) 15 ns
163 Master data hold time (inputs) 0 ns
164 Master data valid (after SCK edge) 10 ns
165 Master data hold time (outputs) 0 ns
166 Rise time output 15 ns
167 Fall time output 15 ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
162
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
MPC866/MPC859 Hardware Specifications, Rev. 2
68 Freescale Semiconductor
CPM Electrical Characteristics
Figure 68. SPI Master (CP = 1) Timing Diagram
12.11SPI Slave AC Electrical Specifications
Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.
Table 27. SPI Slave Timing
Num Characteristic
All Frequencies
Unit
Min Max
170 Slave cycle time 2 tcyc
171 Slave enable lead time 15 ns
172 Slave enable lag time 15 ns
173 Slave clock (SPICLK) high or low time 1 tcyc
174 Slave sequential transfer delay (does not require deselect) 1 tcyc
175 Slave data setup time (inputs) 20 ns
176 Slave data hold time (inputs) 20 ns
177 Slave access time 50 ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
162
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 69
CPM Electrical Characteristics
Figure 69. SPI Slave (CP = 0) Timing Diagram
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181182173
173 170
msb lsb msb
181
177 182
175 179
SPISEL
(Input)
171172
174
Datamsb lsb msbUndef
181
178
176 182
MPC866/MPC859 Hardware Specifications, Rev. 2
70 Freescale Semiconductor
CPM Electrical Characteristics
Figure 70. SPI Slave (CP = 1) Timing Diagram
12.12I2C AC Electrical Specifications
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181182
msb lsb
181
177 182
175 179
SPISEL
(Input)
174
Data
msb lsbUndef
178
176 182
msb
msb
172
173
173
171 170
181
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 71
CPM Electrical Characteristics
Table 28 shows the I2C (SCL < 100 kHz) tim ings.
Table 29 shows the I2C (SCL > 100 kHz) tim ings.
Table 28. I2C Timing (SCL < 100 kHz)
Num Characteristic
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) 0 100 kHz
200 SCL clock frequency (master) 1
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2).
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.
1.5 100 kHz
202 Bus free time between transmissions 4.7 μs
203 Low period of SCL 4.7 μs
204 High period of SCL 4.0 μs
205 Start condition setup time 4.7 μs
206 Start condition hold time 4.0 μs
207 Data hold time 0 μs
208 Data setup time 250 ns
209 SDL/SCL rise time 1 μs
210 SDL/SCL fall time 300 ns
211 Stop condition setup time 4.7 μs
Table 29. I2C Timing (SCL > 100 kHz)
Num Characteristic Expression
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz
200 SCL clock frequency (master) 1
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2).
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.
fSCL BRGCLK/16512 BRGCLK/48 Hz
202 Bus free time between transmissions 1/(2.2 * fSCL) s
203 Low period of SCL 1/(2.2 * fSCL) s
204 High period of SCL 1/(2.2 * fSCL) s
205 Start condition setup time 1/(2.2 * fSCL) s
206 Start condition hold time 1/(2.2 * fSCL) s
207 Data hold time 0 s
208 Data setup time 1/(40 * fSCL) s
209 SDL/SCL rise time 1/(10 * fSCL) s
210 SDL/SCL fall time 1/(33 * fSCL) s
211 Stop condition setup time 1/2(2.2 * fSCL) s
MPC866/MPC859 Hardware Specifications, Rev. 2
72 Freescale Semiconductor
UTOPIA AC Electrical Specifications
Figure 71 shows the I2C bus tim ing.
Figure 71. I2C Bus Timing Diagram
13 UTOPIA AC Electrical Specifications
Table 30 through Table 32 sh ow the AC el ect rical speci fi cati o ns for the UTOP IA interface .
Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications
Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (Internal clock option) Output 4 ns
Duty cycle 50 50 %
Frequency 33 MHz
U2 UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr-active
delay (and PHREQ and PHSEL active delay in MPHY mode)
Output 2 16 ns
U3 UTPB, SOC, Rxclav and Txclav setup time Input 4 ns
U4 UTPB, SOC, Rxclav and Txclav hold time Input 1 ns
Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications
Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (Internal clock option) Output 4 ns
Duty cycle 50 50 %
Frequency 33 MHz
U2 UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active
delay (PHREQ and PHSEL active delay in MPHY mode)
Output 2 16 ns
U3 UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time Input 4 ns
U4 UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time Input 1 ns
SCL
202
205
203
207
204
208
206 209 211210
SDA
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 73
UTOPIA AC Electrical Specifications
Figure 72 shows signa l timings during UTOPIA receive opera tions.
Figure 72. UTOPIA Receive Timing
Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications
Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (external clock option) Input 4 ns
Duty cycle 40 60 %
Frequency 33 MHz
U2 UTPB, SOC, Rxclav and Txclav active delay Output 2 16 ns
U3 UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr
setup time
Input 4 ns
U4 UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr
hold time
Input 1 ns
UtpClk
UTPB
RxEnb
U1
3
2
SOC 4
RxClav
PHREQn
34
HighZ at MPHY HighZ at MPHY
U1
U2
U3 U4
U4
U3
U2
MPC866/MPC859 Hardware Specifications, Rev. 2
74 Freescale Semiconductor
FEC Electrical Characteristics
Figure 73 shows signa l timings during UTOPIA transmit opera tions.
Figure 73. UTOPIA Transmit Timing
14 FEC Electrical Characteristics
This section provides the AC electrica l spe cifications for the fast Ethe rnet controller (FEC). Note that the timing
specifications for the MII signals are independent of system clock frequency (part speed designa tion). Also, MII
signals use TTL signal leve ls compatible with devices opera ting a t either 5.0 or 3.3 V.
14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV,
MII_RX_ER, MII_RX_CLK)
The re ceiver functions corre ctly up t o a MII_RX_CLK maximum frequency of 25 MHz + 1%. The re is no minim um
freq uency requ irement. In addition, the processor cl ock fre quency must ex ceed the MII_RX_ CLK frequenc y – 1%.
Table 33 shows the timings for MII receive signal.
Figure 74 shows the timings for MII receive signal.
Table 33. MII Receive Signal Timing
Num Characteristic Min Max Unit
M1 MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup 5 ns
M2 MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold 5 ns
M3 MII_RX_CLK pulse width high 35% 65% MII_RX_CLK period
M4 MII_RX_CLK pulse width low 35% 65% MII_RX_CLK period
UtpClk
UTPB
TxEnb
1
2
SOC
5
TxClav
PHSELn
34
5
HighZ at MPHY High-Z at MPHY
U1 U1
U2
U2
U2
U3 U4
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 75
FEC Electrical Characteristics
Figure 74. MII Receive Signal Timing Diagram
14.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,
MII_TX_ER, MII_TX_CLK)
The transmitter f unctions cor rec tly up to a MII_TX_CLK maximum frequency of 25 M Hz +1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK
frequency - 1%.
Table 34 shows information on the MII transmit signal timi ng.
Table 34. MII Transmit Signal Timing
Num Characteristic Min Max Unit
M5 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER
invalid
5— ns
M6 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER
valid
—25
M7 MII_TX_CLK pulse width high 35% 65% MII_TX_CLK period
M8 MII_TX_CLK pulse width low 35% 65% MII_TX_CLK period
M1 M2
MII_RX_CLK (input)
MII_RXD[3:0] (inputs)
MII_RX_DV
MII_RX_ER
M3
M4
MPC866/MPC859 Hardware Specifications, Rev. 2
76 Freescale Semiconductor
FEC Electrical Characteristics
Figure 75 shows the MII transmit signal timing dia gram.
Figure 75. MII Transmit Signal Timing Diagram
14.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Table 35 shows the timing for on the MII async inputs signa l.
Figure 76 shows the MII asynchronous inputs signal timing diagr am.
Figure 76. MII Async Inputs Timing Diagram
14.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)
Table 36 shows the timing for the MII se rial management channel signal. The FEC functions c orrectly with a
maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.
Table 35. MII Async Inputs Signal Timing
Num Characteristic Min Max Unit
M9 MII_CRS, MII_COL minimum pulse width 1.5 MII_TX_CLK period
Table 36. MII Serial Management Channel Timing
Num Characteristic Min Max Unit
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum
propagation delay)
0— ns
M11 MII_MDC falling edge to MII_MDIO output valid (maximum
propagation delay)
—25 ns
M12 MII_MDIO (input) to MII_MDC rising edge setup 10 ns
M6
MII_TX_CLK (input)
MII_TXD[3:0] (outputs)
MII_TX_EN
MII_TX_ER
M5
M7
M8
MII_CRS, MII_COL
M9
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 77
FEC Electrical Characteristics
Figure 77 shows the MII serial management channel timing dia gram.
Figure 77. MII Serial Management Channel Timing Diagram
M13 MII_MDIO (input) to MII_MDC rising edge hold 0 ns
M14 MII_MDC pulse width high 40% 60% MII_MDC period
M15 MII_MDC pulse width low 40% 60% MII_MDC period
Table 36. MII Serial Management Channel Timing
Num Characteristic Min Max Unit
M11
MII_MDC (output)
MII_MDIO (output)
M12 M13
MII_MDIO (input)
M10
M14
MM15
MPC866/MPC859 Hardware Specifications, Rev. 2
78 Freescale Semiconductor
Mechanical Data and Ordering Information
15 Mechanical Data and Ordering Information
Table 37 shows information on the MPC866/859 derivative devices.
Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative de vices.
Table 37. MPC866/859 Derivatives
Device
Number
of
SCCs 1
1
Serial communications controller (SCC).
Ethernet
Support
Multi-Channel
HDLC Support ATM Support
Cache Size
Instruction Data
MPC866T 4 10/100 Mbps Yes Yes 4 Kbyte 4 Kbytes
MPC866P 4 10/100 Mbps Yes Yes 16 Kbyte 8 Kbytes
MPC859T 1 (SCC1) 10/100 Mbps Yes Yes 4 Kbyte 4 Kbytes
MPC859DSL 1 (SCC1) 10/100 Mbps No Up to 4 addresses 4 Kbyte 4 Kbytes
Table 38. MPC866/859 Package/Frequency Orderable
Package Type Temperature (Tj) Frequency (MHz) Order Number
Plastic ball grid array
(ZP suffix)
Non lead free
0° to 95°C 50 MPC859DSLZP50A
66 MPC859DSLZP66A
100 MPC859PZP100A
MPC859TZP100A
MPC866PZP100A
MPC866TZP100A
133 MPC859PZP133A
MPC859TZP133A
MPC866PZP133A
MPC866TZP133A
Plastic ball grid array
(CZP suffix)
Non lead free
–40° to 100°C 50 MPC859DSLCZP50A
66 MPC859DSLCZP66A
100 MPC859PCZP100A
MPC859TCZP100A
MPC866PCZP100A
MPC866TCZP100A
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 79
Mechanical Data and Ordering Information
Plastic ball grid array
(VR suffix)
Lead free
0° to 95°C 50 MPC859DSLVR50A
66 MPC859DSLVR66A
100 MPC859PVR100A
MPC859TVR100A
MPC866PVR100A
MPC866TVR100A
133 MPC859PVR133A
MPC859TVR133A
MPC866PVR133A
MPC866TVR133A
Plastic ball grid array
(CVR suffix)
Lead free
–40° to 100°C 50 MPC859DSLCVR50A
66 MPC859DSLCVR66A
100 MPC859PCVR100A
MPC859TCVR100A
MPC866PCVR100A
MPC866TCVR100A
Table 38. MPC866/859 Package/Frequency Orderable (continued)
MPC866/MPC859 Hardware Specifications, Rev. 2
80 Freescale Semiconductor
Mechanical Data and Ordering Information
15.1 Pin Assignments
Figure 78 shows the top view pinout of the PBGA package. For additional inf ormati on, se e the MPC866
PowerQUICC Family Users Manual.
NOTE: This is the top view of the device.
Figure 78. Pinout of the PBGA Package
PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 CLKOUT IPA3DP2
A2 A7 A14 A27 A29 A30 A28 A31 VDDL BSA2 WE1 WE3 CE2A CS1CS4A5 A11
18 16 14 13 12 11 10 9 8 7 6 5 3 2417 15 119
A1 A6 A13 A17 A21 A23 A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CE1A WRCS5A4 A10 GPLB4A0
PA15 A3 A12 A16 A20 A24 A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS0 TACS7PB31 A9 GPLA4PB30
PC14 PC15 N/C N/C A15 A19 A25 A18 BSA0 GPLA0 N/C CS6 GPLA5 BDIPCS2PA14 A8 TEAPB28
PC13 PB29
VDDH VDDH
BI BGCS3PA13 BBPB27
PC12 VDDL
GND GND
TS IRQ3VDDLPA12 BURSTPB26
TMS PA11 IRQ6 IPB4BRTDO IPB3TRST
M_MDIO
TCK IRQ2 IPB0M_COLTDI IPB7VDDL
PB24 PB25 IPB1 IPB2IPB5PA10 ALEBPC11
PA9 PB21 GND IPB6 ALEABADDR30PB23 IRQ4PC10
PC9 PB20 AS OP1OP0PA8 MODCK1PB22
PC8 PC7
BADDR28
BADDR29
MODCK2
PA6 VDDL
PA7
PA5 PB16
TEXP
EXTCLK
HRESET
PB18 EXTALPB19
PB17 VDDL GND
RSTCONF
SRESET
VDDLPA 3 G N D XTALPA4
PA2 PD1 2 VDDH
WAIT_A
PORESET
WAIT_B
PB15 VDDH VDDLPC6
P C5 PD1 1 V D D H D 12 D 17 D 9 D 1 5 D 2 2 D 2 5 D 3 1 I PA 6 I PA 0 I PA 7 N / CIPA1PC4 PD7 VDDSYNPA1
PB14 PD4 IRQ1 D8 D23 D11 D16 D19 D21 D26 D30 IPA5 IPA2 N/CIPA4PD15 PD5 VSSSYNPA 0
PD13 PD6 IRQ0 D13D27D10D14D18D20D24D28DP1 DP0N/CDP3PD9 M_Tx_EN VSSSYN1
PD14
B
A
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
PD10 PD8
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 81
Mechanical Data and Ordering Information
Table 39 contains a list of the MPC866 input and output signals and shows multiplexing and pin assignments.
Table 39. Pin Assignments
Name Pin Number Type
A[0:31] B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15,
C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11,
D10, C10, A13, A10, A12, A11, A9
Bidirectional
Three-state
TSIZ0
REG
B9 Bidirectional
Three-state
TSIZ1 C9 Bidirectional
Three-state
RD/WR B2 Bidirectional
Three-state
BURST F1 Bidirectional
Three-state
BDIP
GPL_B5
D2 Output
TS F3 Bidirectional
Active Pull-up
TA C2 Bidirectional
Active Pull-up
TEA D1 Open-drain
BI E3 Bidirectional
Active Pull-up
IRQ2
RSV
H3 Bidirectional
Three-state
IRQ4
KR
RETRY
SPKROUT
K1 Bidirectional
Three-state
CR
IRQ3
F2 Input
D[0:31] W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11,
T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8,
U7, V12, V6, W5, U6, T7
Bidirectional
Three-state
DP0
IRQ3
V3 Bidirectional
Three-state
DP1
IRQ4
V5 Bidirectional
Three-state
DP2
IRQ5
W4 Bidirectional
Three-state
DP3
IRQ6
V4 Bidirectional
Three-state
MPC866/MPC859 Hardware Specifications, Rev. 2
82 Freescale Semiconductor
Mechanical Data and Ordering Information
BR G4 Bidirectional
BG E2 Bidirectional
BB E1 Bidirectional
Active Pull-up
FRZ
IRQ6
G3 Bidirectional
IRQ0 V14 Input
IRQ1 U14 Input
M_TX_CLK
IRQ7
W15 Input
CS[0:5] C3, A2, D4, E4, A4, B4 Output
CS6
CE1_B
D5 Output
CS7
CE2_B
C4 Output
WE0
BS_B0
IORD
C7 Output
WE1
BS_B1
IOWR
A6 Output
WE2
BS_B2
PCOE
B6 Output
WE3
BS_B3
PCWE
A5 Output
BS_A[0:3] D8, C8, A7, B8 Output
GPL_A0
GPL_B0
D7 Output
OE
GPL_A1
GPL_B1
C6 Output
GPL_A[2:3]
GPL_B[2:3]
CS[2–3]
B5, C5 Output
UPWAITA
GPL_A4
C1 Bidirectional
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 83
Mechanical Data and Ordering Information
UPWAITB
GPL_B4
B1 Bidirectional
GPL_A5 D3 Output
PORESET R2 Input
RSTCONF P3 Input
HRESET N4 Open-drain
SRESET P2 Open-drain
XTAL P1 Analog Output
EXTAL N1 Analog Input (3.3V only)
CLKOUT W3 Output
EXTCLK N2 Input (3.3V only)
TEXP N3 Output
ALE_A
MII-TXD1
K2 Output
CE1_A
MII-TXD2
B3 Output
CE2_A
MII-TXD3
A3 Output
WAIT_A
SOC_Split2
R3 Input
WAIT_B R4 Input
IP_A0
UTPB_Split02
MII-RXD3
T5 Input
IP_A1
UTPB_Split12
MII-RXD2
T4 Input
IP_A2
IOIS16_A
UTPB_Split22
MII-RXD1
U3 Input
IP_A3
UTPB_Split32
MII-RXD0
W2 Input
IP_A4
UTPB_Split42
MII-RXCLK
U4 Input
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
84 Freescale Semiconductor
Mechanical Data and Ordering Information
IP_A5
UTPB_Split52
MII-RXERR
U5 Input
IP_A6
UTPB_Split62
MII-TXERR
T6 Input
IP_A7
UTPB_Split72
MII-RXDV
T3 Input
ALE_B
DSCK/AT1
J1 Bidirectional
Three-state
IP_B[0:1]
IWP[0:1]
VFLS[0:1]
H2, J3 Bidirectional
IP_B2
IOIS16_B
AT2
J2 Bidirectional
Three-state
IP_B3
IWP2
VF2
G1 Bidirectional
IP_B4
LWP0
VF0
G2 Bidirectional
IP_B5
LWP1
VF1
J4 Bidirectional
IP_B6
DSDI
AT0
K3 Bidirectional
Three-state
IP_B7
PTR
AT3
H1 Bidirectional
Three-state
OP0
MII-TXD0
UtpClk_Split2
L4 Bidirectional
OP1 L2 Output
OP2
MODCK1
STS
L1 Bidirectional
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 85
Mechanical Data and Ordering Information
OP3
MODCK2
DSDO
M4 Bidirectional
BADDR30
REG
K4 Output
BADDR[28:29] M3, M2 Output
AS L3 Input
PA1 5
RXD1
RXD4
C18 Bidirectional
PA1 4
TXD1
TXD4
D17 Bidirectional
(Optional: Open-drain)
PA1 3
RXD2
E17 Bidirectional
PA1 2
TXD2
F17 Bidirectional
(Optional: Open-drain)
PA1 1
L1TXDB
RXD3
G16 Bidirectional
(Optional: Open-drain)
PA1 0
L1RXDB
TXD3
J17 Bidirectional
(Optional: Open-drain)
PA9
L1TXDA
RXD4
K18 Bidirectional
(Optional: Open-drain)
PA8
L1RXDA
TXD4
L17 Bidirectional
(Optional: Open-drain)
PA7
CLK1
L1RCLKA
BRGO1
TIN1
M19 Bidirectional
PA6
CLK2
TOUT1
M17 Bidirectional
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
86 Freescale Semiconductor
Mechanical Data and Ordering Information
PA5
CLK3
L1TCLKA
BRGO2
TIN2
N18 Bidirectional
PA4
CLK4
TOUT2
P19 Bidirectional
PA3
CLK5
BRGO3
TIN3
P17 Bidirectional
PA2
CLK6
TOUT3
L1RCLKB
R18 Bidirectional
PA1
CLK7
BRGO4
TIN4
T19 Bidirectional
PA0
CLK8
TOUT4
L1TCLKB
U19 Bidirectional
PB31
SPISEL
REJECT1
C17 Bidirectional
(Optional: Open-drain)
PB30
SPICLK
RSTRT2
C19 Bidirectional
(Optional: Open-drain)
PB29
SPIMOSI
E16 Bidirectional
(Optional: Open-drain)
PB28
SPIMISO
BRGO4
D19 Bidirectional
(Optional: Open-drain)
PB27
I2CSDA
BRGO1
E19 Bidirectional
(Optional: Open-drain)
PB26
I2CSCL
BRGO2
F19 Bidirectional
(Optional: Open-drain)
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 87
Mechanical Data and Ordering Information
PB25
RXADDR32
SMTXD1
J16 Bidirectional
(Optional: Open-drain)
PB24
TXADDR32
SMRXD1
J18 Bidirectional
(Optional: Open-drain)
PB23
TXADDR22
SDACK1
SMSYN1
K17 Bidirectional
(Optional: Open-drain)
PB22
TXADDR42
SDACK2
SMSYN2
L19 Bidirectional
(Optional: Open-drain)
PB21
SMTXD2
L1CLKOB
PHSEL1 1
TXADDR1 2
K16 Bidirectional
(Optional: Open-drain)
PB20
SMRXD2
L1CLKOA
PHSEL01
TXADDR02
L16 Bidirectional
(Optional: Open-drain)
PB19
RTS1
L1ST1
N19 Bidirectional
(Optional: Open-drain)
PB18
RXADDR42
RTS2
L1ST2
N17 Bidirectional
(Optional: Open-drain)
PB17
L1RQb
L1ST3
RTS3
PHREQ11
RXADDR12
P18 Bidirectional
(Optional: Open-drain)
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
88 Freescale Semiconductor
Mechanical Data and Ordering Information
PB16
L1RQa
L1ST4
RTS4
PHREQ01
RXADDR02
N16 Bidirectional
(Optional: Open-drain)
PB15
BRGO3
TxClav
RxClav
R17 Bidirectional
PB14
RXADDR22
RSTRT1
U18 Bidirectional
PC15
DREQ0
RTS1
L1ST1
RxClav
TxClav
D16 Bidirectional
PC14
DREQ1
RTS2
L1ST2
D18 Bidirectional
PC13
L1RQb
L1ST3
RTS3
E18 Bidirectional
PC12
L1RQa
L1ST4
RTS4
F18 Bidirectional
PC11
CTS1
J19 Bidirectional
PC10
CD1
TGATE1
K19 Bidirectional
PC9
CTS2
L18 Bidirectional
PC8
CD2
TGATE2
M18 Bidirectional
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 89
Mechanical Data and Ordering Information
PC7
CTS3
L1TSYNCB
SDACK2
M16 Bidirectional
PC6
CD3
L1RSYNCB
R19 Bidirectional
PC5
CTS4
L1TSYNCA
SDACK1
T18 Bidirectional
PC4
CD4
L1RSYNCA
T17 Bidirectional
PD15
L1TSYNCA
MII-RXD3
UTPB0
U17 Bidirectional
PD14
L1RSYNCA
MII-RXD2
UTPB1
V19 Bidirectional
PD13
L1TSYNCB
MII-RXD1
UTPB2
V18 Bidirectional
PD12
L1RSYNCB
MII-MDC
UTPB3
R16 Bidirectional
PD11
RXD3
MII-TXERR
RXENB
T16 Bidirectional
PD10
TXD3
MII-RXD0
TXENB
W18 Bidirectional
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
90 Freescale Semiconductor
Mechanical Data and Ordering Information
PD9
RXD4
MII-TXD0
UTPCLK
V17 Bidirectional
PD8
TXD4
MII-MDC
MII-RXCLK
W17 Bidirectional
PD7
RTS3
MII-RXERR
UTPB4
T15 Bidirectional
PD6
RTS4
MII-RXDV
UTPB5
V16 Bidirectional
PD5
REJECT2
MII-TXD3
UTPB6
U15 Bidirectional
PD4
REJECT3
MII-TXD2
UTPB7
U16 Bidirectional
PD3
REJECT4
MII-TXD1
SOC
W16 Bidirectional
TMS G18 Input
TDI
DSDI
H17 Input
TCK
DSCK
H16 Input
TRST G19 Input
TDO
DSDO
G17 Output
MII_CRS B7 Input
MII_MDIO H18 Bidirectional
MII_TXEN V15 Output
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 91
Mechanical Data and Ordering Information
MII_COL H4 Input
VSSSYN1 V1 PLL analog VDD and
GND
VSSSYN U1 Power
VDDSYN T1 Power
GND F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10,
G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14,
J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11,
K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7,
M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11,
N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14
Power
VDDL A8, M1, W8, H19, F4, F16, P4, P16, R1 Power
VDDH E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5,
G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5,
P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14
Power
N/C D6, D13, D14, U2, V2, T2 No-connect
1
Classic SAR mode only
2
ESAR mode only
Table 39. Pin Assignments (continued)
Name Pin Number Type
MPC866/MPC859 Hardware Specifications, Rev. 2
92 Freescale Semiconductor
Mechanical Data and Ordering Information
15.2 Mechanical Dimensions of the PBGA Package
For more information on the printed-circuit board layout of the P BGA package, including thermal via design and
sugges ted pad layout, pl ease r efer t o Plastic Ball Grid Arr ay Applicatio n Note (order number: AN123 1/D) availabl e
from your local Freescale sales of fice. Figure 79 shows the mechanical dimensions of the PBGA package.
Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package
Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP
is 62%Sn 36%Pb 2%Ag
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 93
Document Revision History
16 Document Revision History
Table 40 lists significant changes bet ween revisions of this doc ument.
Table 40. Document Revision History
Revision
Number Date Substantive Changes
0 5/2002 Initial revision
1 11/2002 Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1 4/2003 Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere
composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb
2%Ag to Figure 15-79.
1.2 4/2003 Added the MPC859P.
1.3 5/2003 Changed the SPI Master Timing Specs. 162 and 164.
1.4 7-8/2003 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and
B29b to show that TRLX can be 0 or 1.
Added nontechnical reformatting.
1.5 3/14/2005 Updated document template.
2 2/10/2006 Updated orderable parts table.
MPC866/MPC859 Hardware Specifications, Rev. 2
94 Freescale Semiconductor
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 95
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
MPC866EC
Rev. 2
2/2006
How to Reach Us:
Home Page:
www.freescale.com
email:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-0047 Japan
0120 191014
+81 3 3440 3569
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@
hibbertgroup.com
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The
described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM
Corp. and used under license. All other product or service names are the property of their
respective owners.
© Freescale Semiconductor, Inc. 2006.
Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor
data sheets and/or specifications can and do vary in different applications and actual performance
may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. Freescale Semiconductor does not convey
any license under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could create a situation
where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.