LLE 0 Pp uassus2 cooaeas 4 ff Data Sheet No. PD-9.471A INTERNATIONAL RECTIFIER T- 37-24 INTERNATIONAL RECTIFIER | [4R HEXFET TRANSISTORS IRFSZ30 P-CHANNEL IRFS 232 50 VOLT POWER MOSFETs -50 Voit, 0.14 Ohm, HEXFET Features The HEXFET technology is the key to International Rectifiers = Compact Plastic Package advanced line of power MOSFET transistors. The efficient @ Fast Switchin geometry and unique processing of the HEXFET design achieve , g very low on-state resistance combined with high transconduc- = Low Drive Current tance and extreme device ruggedness. @ Ease of Paralleling The P-Channel HEXFETs are designed for applications which 1 require the convenience of reverse polarity operation, They re- m Excellent Temperatu re Stability tain all of the features of the more common N-Channel HEXFETs such as voltage control, very fast switching, ease of paralleling, and excellent temperature stability. P-Channel HEXFETs are intended for use in power stages where Product Summary complementary symmetry with N-Channel devices offers circuit simplification. They are also very useful in drive stages because Part Number | Vps Ros(on) Ip of the circuit versatility offered by the reverse polarity connec- tion. Applications include motor control, audio amplifiers, IRF9Z30 -50V 0.140 ~18A switched mode converters, control circuit and pulse amplifiers. IRF9Z32 -50V 0.219 -15A CASE STYLE AND DIMENSIONS osaioaisy | TeRMa 2.87 10.1131 [* fazg 4051] ORAIN 262 (0.103) | 3.78 10.149) bag #32 (0.052) Fare sar NA. 22 (0 048) 10.54 (0.415) | 6.48 (0 255) MAX. Fy 62310 245) TERM3 -SQUACE I tsoalo TERM 2 - DRAIN ee o eat TERM 1 - GATE 11 (0.45) MIN asian 15.09 (0.594) | - 432 (0 170} MAX. k 2nd _| 1 2.29 10.090) 3.96 10 156) a 53310210) 13.97 (0550) } 483 (0 190) 1347 xi[x 13.97 (0.550) pla LS y SECTION X-K 0.51 (0.020) MAX. | | oarwarey [] * 0.939 (0037) 1.40 (0.055) ne 0.686 10027) 115 (Oss) 289 10 114) 76410 104) Case Style TO-220AB Dimensions in Millimeters and (Inches) C-385. LE D i 4855452 OOGSb3? b&b | IRF9Z30, IRF9Z32 Devices INTERNATIONAL RECTIFIER T-39-21 Absolute Maximum Ratings Parameter + Source Fig. (Avalanche Current) @ ~31 emperature Range 65 to 150 lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Parameter Units ~ Source VGs = OV ~50 Vv IRF9Z32 Ip = 250 pA Vos > 'pion) * RDStonimax. Ves = 10V Rpston) Veg = -10V, Ip = 9.34 = x Gs = See Fig. 10 f See Fig. 16 (MOSFET switching times are essentially independent of operating temperature} = i Ip = - Vos = a (Gate-Source Plus Gate-Drain) See Fig. 17 for test circuit. (Gate charge is essentially independent of operating temperature) drain lead, 6mm (0.25 in.) showing from package to center of the internat die. device source inductances. lead, 6mm (0.25 in.) from package to source bonding Thermal Resistance Rthyc Junction-to-Case ALL _ _ 17 | KWO Rincs Case-to-Sink ALL - 1.0 - KAW | Mounting surface flat, smaoth, and greased. Ring Junction-to-Ambient ALL - - 80 KAW@ | Typical socket mount C-386LLE D i 44855452 G008b348 & i IRF9Z30, IRF9Z32 Devices T-39-21 INTERNATIONAL RECTIFIER Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF9Z30 - -18 A Modified MOSFET symbo! showing the integral reverse (Body Diode) P-N junction rectifier. IRF9Z32 - - -15 A 0 Ism Pulse Source Current - IRF9Z30 _ - -60 A 6 (Body Diode} IRF9Z32 _ _ ~50 A 7 Vsgp Diode Forward Voltage @ ALL _ - ~6.3 v Te = 28C, Ig = 18A, Veg = OV ty Reverse Recovery Time ALL 54 120 250 ns Ty = 25C, [p = ~18A, dit = 100A/ps Ona Reverse Recovered Charge ALL 0.20 | 0.47 1 2c Tj = 25C, Ip = 18A, digit = 100A}s ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by lg +lp Ty = 25C to 150C Repetitive Rating: Pulse width limited by @ @ Vda= -25V, Tj = 25C @ Pulse Test: Pulse width = 300 ps, KW = CIW max. junction temperature. See Transient L = 100 pH, Rg = 250 Duty Cycle < 2% WIK = WIC Thermal Impedance Curve (Fig. 6). Ww VI a a Ww ur a r W 4. w Q-~ a = = = = = 5 5 12 Woes ut Qo. ec c c 5 2? 5 $ a oa Zz Zz 4 q < < 2 @ite ac Qa a 6 a * H Ww Ww lu 5 > = > at a be ke < < a SB 2b y yee F cade w - g ya isoec grants ~4y s 3.4 = iS if 23 2s 2 2 4 6 8 13 27E Vpg, OAAIN-TO-SQUACE VOLTAGE (VOLTS) NEGATIVE Vgg. GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 25 103 om 3 a on NEGATIVE Ip, DAAIN CURRENT (AMPERES) a T 215 24590 Ty=150C NEGATIVE Ip, DRAIN CURRENT (AMPERES) -5Y I f - -4t 4 INGLE PULSE . ! 2 3 4 8 a 2 5 10 2 5 102 NEGATIVE Vog. DRAIN-TO-SOURCE VOLTAGE {VGLTS) NEGATIVE Vpg. ORAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area C-387LLE D i 4A5S4S2 90086349 a i IRF9Z30, IRF9Z32 Devices INTERNATIONAL RECTIFIER -39-21 oO Pa | | 0.4 <-t td NOTES: 4. DUTY FACTOR, D=t,/to 2. PEAK Ty=Ppm x Zthuc + To 4075 4074 1073 1072 0.4 4 10 ty, RECTANGULAR PULSE DURATION (SECONDS) THERMAL RESPONSE (Zpyc) Fig. 5 Maximum Effective Transient Thermal Impedance, Junctlon-to-Case Vs. Pulse Duration 10 80ps PULSE TEST Vos = 2 X Veg 2250 Tye25ec TRANSCONDUCTANCE (SIEMENS) NEGATIVE Ing, REVERSE ORAIN CURRENT (AMPERES) T y= 150C a 2 an t 0 O.1 . : 0 4 8 12 16 20 0 a 4 6 a is NEGATIVE Ip. DRAIN CURRENT (AMPERES) NEGATIVE Vop. SQUACE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 1.25 a. Ww) Ww 4 2 re < J be S 4 > 1.15 a 2. z a ui 1.05 dal. aN SN N od 84 es 1 = 3 S 9.95 e ey oz 42 o 4 = i Zz a g - & 0.85 < oO. h 8 a a Fe > Yes = -4 8 7550 -43 -290 9 23 40 69 32 105 120 140 160 0.955 =40 -20 0 20 40 6O 80 100 120 140 160 Ty. JUNCTION TEMPERATURE {( C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voitage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature C-388LLE D i 4aSS452 GOO&b4O & i INTERNATIONAL RECTIFIER 2000 7 = Cgg * Cggs Cys SHORTED 1600 frss * ad Coss = Cas + Cys Sgy / (gs + Cgq & * Cas + Cog & ty 1200 go 2 z EF rR oO a 800 2 ao a 400 0 2 5 10 a 5 102 1 NEGATIVE Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage ORAIN-TO-SOUACE ON RESISTANCE ~ Vgg = ~20V Ros (on) - 30 *o 12 24 36 48 60 NEGATIVE Ip. DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current VARY tp TO OBTAIN REQUIRED PEAK IL Veg = -10V; tp 4 IL Von =05BVoss EC =0758Vpss Fig. 14a Clamped Inductive Test Circuit NEGATIVE Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) NEGATIVE Ip, ORAIN CURRENT (AMPERES) IRF9Z30, IRF9Z32 Devices T-39-21 FOR TEST CIRCUIT SEE FIGURE 17 10 20 30 40 50 Qg. TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 25 50 75 106 125 1 Tg. GASE TEMPERATURE ( C) Fig. 13 Maximum Drain Current Vs. Case Temperature C-389 _ = forts sy / Vop os / t p ~ Vos Ec Fig. 14b Clamped Inductive WaveformsLLE D i 4asSuS2 GOOSL4L & i INTERNATIONAL RECTIFIER T-39-21 IRF9Z30, IRF9Z32 Devices > / VARY ty TO CBTAIN _ REQUIRED PEAK IL N { t Vos . tpe Pp" Vos BVpss Fig. 155 Unclamped Inductive Load Fig. 15a Unclamped Inductive Test Circuit Test Waveforms os CURRENT ISOLATED REGULATOR SUPPLY: SAME TYPE iv BATTERY VARY tp TO OBTAIN REQUIRED PEAK t, Het Vgg = -10be'g> av Fig. 16 Switching Time Test Circuit O 'Yos | | 0 CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 17 Gate Charge Test Circult 1012 4910 = 0.1 = 60% UCL wo B 18 = rt g i 90% UCL 3 So uw Co = s oo = w a * 99% UCL Fd = = So a z 0001 104 = 102 t . 0.0001 50 70 90 110 130150 50 70 30 110 130 160 TEMPERATURE (C) TEMPERATURE (C) *Fig. 18 Typical time to Accumulated 1% Gate Failure *Fig. 19 Typical High Temperature Reverse Bias . (HTRB) Failure Rae The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office. C-390