AUIRGP4062D AUIRGP4062D-E AUTOMOTIVE GRADE INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C Low VCE (on) Trench IGBT Technology Low Switching Losses 5s SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free, RoHS Compliant Automotive Qualified * VCES = 600V IC = 24A, TC = 100C tSC 5s, TJ(max) = 175C G E VCE(on) typ. = 1.60V n-channel C C Benefits High Efficiency in a Wide Range of Applications Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses Rugged Transient Performance for Increased Reliability Excellent Current Sharing in Parallel Operation Low EMI Base Part Number Package Type AUIRGP4062D AUIRGP4062D-E TO-247AC TO-247AD G C E G TO-247AC AUIRGP4062D G Gate Standard Pack Form Quantity Tube 25 Tube 25 C E TO-247AD AUIRGP4062D-E C Collector E Emitter Orderable Part Number AUIRGP4062D AUIRGP4062D-E Absolute Maximum Ratings Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25C, unless otherwise specified. Parameter Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current VGE =15V Clamped Inductive Load Current VGE =20V Diode Continuous Forward Current Diode Continuous Forward Current Maximum Repetitive Forward Current Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage PD @ TC = 25C Maximum Power Dissipation PD @ TC = 100C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. 600 48 24 72 96 48 24 96 20 30 250 125 -55 to +175 VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFSM VGE Units V A V W C 300 (0.063 in.(1.6mm) from case) 10 lbf*in (1.1 N*m) Thermal Resistance Parameter RJC (IGBT) Thermal Resistance Junction-to-Case (each IGBT) TO-247 RJC (Diode) Thermal Resistance Junction-to-Case (each Diode) TO-247 Thermal Resistance, Case-to-Sink (flat, greased surface) TO-247 RCS Thermal Resistance, Junction-to-Ambient (typical socket mount) TO-247 RJA Min. --- --- --- --- Typ. --- --- 0.24 40 Max. 0.65 1.62 --- --- Units C/W * Qualification standards can be found at www.infineon.com 1 2017-08-25 AUIRGP4062D/AUIRGP4062D-E Electrical Characteristics @ TJ = 25C (unless otherwise specified) Min. Typ. Parameter Collector-to-Emitter Breakdown Voltage V(BR)CES V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage VGE(th) VGE(th)/TJ Threshold Voltage temp. coefficient Forward Transconductance gfe Collector-to-Emitter Leakage Current ICES VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current 600 -- -- -- -- 4.0 -- -- -- -- -- -- -- Max. Units -- 0.30 1.60 2.03 2.04 -- -18 17 2.0 775 1.80 1.28 -- Conditions Ref. Fig. CT6 -- V VGE = 0V, IC = 100A -- V/C VGE = 0V, IC = 1mA (25C-175C) 1.95 5,6,7 IC = 24A, VGE = 15V, TJ = 25C -- IC = 24A, VGE = 15V, TJ = 150C 9,10,11 V -- IC = 24A, VGE = 15V, TJ = 175C 6.5 V IC = 700A 9,10, -- mV/C VCE = VGE, IC = 1.0mA (25C-175C) 11,12 -- S VCE = 50V, IC = 24A,PW = 80s 25 VGE = 0V, VCE = 600V A -- VGE = 0V, VCE = 600V,TJ = 175C 2.6 IF = 24A 8 V IF = 24A, TJ = 175C 100 nA VGE = 20V, VCE = 0V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc Eon Eoff Parameter Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Min. -- -- -- -- -- Typ. 50 13 21 115 600 Max. 75 20 31 201 700 Etotal td(on) Total Switching Loss Turn-On delay time -- -- 715 41 901 53 tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance -- -- -- -- -- -- -- -- -- -- -- -- -- 22 104 29 420 840 1260 40 24 125 39 1490 129 45 31 115 41 -- -- -- -- -- -- -- -- -- -- RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area Erec trr Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Irr Peak Reverse Recovery Current Units nC Conditions Ref. Fig. 24 CT1 IC = 24A VGE = 15V VCC = 400V J IC = 24A, VCC = 400V, VGE = +15V,TJ = 25C ns RG = 10, L = 200H,LS = 150nH , CT4 Energy losses include tail & diode reverse recovery 13,15, CT4 WF1,WF2 J IC = 24A, VCC = 400V, VGE = +15V,TJ = 175C ns RG = 10, L = 200H, LS = 150nH Energy losses include tail & diode reverse recovery pF VGE = 0V VCC = 30V f = 1.0Mhz TJ = 175C, IC = 96A VCC = 480V, Vp = 600V 5 -- -- s -- -- -- 624 -- 89 37 -- -- J ns Rg = 10, VGE = +20V to 0V VCC = 400V, Vp = 600V Rg = 10, VGE = +15V to 0V TJ = 175C VCC = 400V,IF = 24A,VGE = 15V, A RG = 10, L = 200H,LS = 150nH 14,16 CT4 WF1 WF2 23 4 CT2 22,CT3 WF4 17,18,19, 20,21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 100H, RG = 10. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 50 300 45 250 40 35 200 Ptot (W) IC (A) 30 25 20 150 100 15 10 50 5 0 0 20 40 60 0 80 100 120 140 160 180 0 20 40 60 T C (C) 80 100 120 140 160 180 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC (A) IC (A) 10sec 10 100sec 1 10 1msec Tc = 25C Tj = 175C Single Pulse DC 1 0.1 1 10 100 1000 10 10000 100 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175C; VGE =20V Fig. 3 - Forward SOA TC = 25C, TJ 175C; VGE =15V 90 90 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 60 50 50 40 30 30 20 20 10 10 0 0 1 2 3 4 5 6 7 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 40 VCE (V) 3 70 ICE (A) 70 0 1000 VCE (V) 8 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 90 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 80 50 IF (A) ICE (A) 60 100 40 30 -40c 25C 175C 60 40 20 20 10 0 0 1 2 3 4 5 6 7 0 8 0.0 1.0 VCE (V) 20 18 18 16 16 14 14 12 ICE = 12A ICE = 24A ICE = 48A 10 8 3.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80s Fig. 7 - Typ. IGBT Output Characteristics TJ = 175C; tp = 80s VCE (V) VCE (V) 20 2.0 VF (V) 12 ICE = 12A ICE = 24A ICE = 48A 10 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40C Fig. 10 - Typical VCE vs. VGE TJ = 25C 20 120 18 100 16 T J = 25C T J = 175C 80 12 ICE = 12A ICE = 24A ICE = 48A 10 8 ICE (A) VCE (V) 14 60 40 6 4 20 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175C 4 20 0 5 10 15 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 1000 1800 1600 tdOFF Energy (J) 1200 Swiching Time (ns) 1400 EOFF 1000 800 EON 600 100 tdON tF 10 tR 400 200 0 1 0 10 20 30 40 50 60 10 20 30 40 50 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 10; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 10; VGE = 15V 1000 1600 1400 EON 1000 Swiching Time (ns) Energy (J) 1200 EOFF 800 600 tdOFF 100 tdON 400 tF 200 tR 0 10 0 25 50 75 100 125 0 25 50 75 100 125 RG () Rg () Fig. 15 - Typ. Energy Loss vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 24A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 24A; VGE = 15V 45 40 RG = 10 40 35 35 30 RG = 22 IRR (A) IRR (A) 30 25 RG = 47 20 20 15 RG = 100 15 10 5 10 0 10 20 30 40 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175C 5 25 50 60 0 25 50 75 100 125 RG ( Fig. 18 Typ. Diode IRR vs. RG TJ = 175C 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 45 4000 40 3500 35 10 3000 QRR (nC) 30 IRR (A) 48A 25 20 22 2500 47 2000 1500 15 12A 1000 10 500 5 0 500 1000 0 1500 1500 280 14 240 12 200 10 160 8 120 200 6 80 0 4 800 600 RG = 22 RG = 100 400 0 10 Time (s) RG = 47 RG = 10 20 30 40 50 40 8 60 Current (A) 16 1000 10 12 14 16 18 VGE (V) IF (A) Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25C Fig. 21 - Typ. Diode ERR vs. IF TJ = 175C 16 VGE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) 1000 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 24A; TJ = 175C Energy (J) 500 diF /dt (A/s) diF /dt (A/s) Cies 1000 Coes 100 Cres 0 20 40 60 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 10 80 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 24A 100 100 0 5 10 15 20 25 30 35 40 45 50 55 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 24A; L = 600H 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 C 2 1 C 2 Ci= iRi Ci= iRi SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Ri (C/W) i (sec) 0.2782 0.000311 0.3715 0.006347 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 0.1 0.01 0.001 0.0001 1E-006 D = 0.50 0.20 0.10 0.05 J 0.02 0.01 R1 R1 J 1 R2 R2 R3 R3 C 1 2 2 3 3 Ci= iRi Ci= iRi SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 C Ri (C/W) i (sec) 0.693 0.001222 0.621 0.005254 0.307 0.038140 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 7 2017-08-25 AUIRGP4062D/AUIRGP4062D-E L 80 V + - DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - BVCES Filter Circuit 2017-08-25 AUIRGP4062D/AUIRGP4062D-E 600 30 600 25 500 60 tf 500 50 V CE CURR tr 90% ICE 20 VCE (V) ICE V CE 300 200 15 10 5% V CE 400 VCE (V) 400 40 ICE CURREN 300 90% test 200 20 10% ICE 100 5 100 0 0 5% V CE 5% ICE 0 EOFF Loss -100 -0.40 10 0 EON -5 0.10 30 0.60 -100 11.70 11.90 12.10 -10 12.30 Time (s) Time(s) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175C using Fig. CT.4 30 600 300 ICE 500 10 tRR 400 Peak IRR VCE (V) IRR (A) 0 -10 10% Peak IRR 200 VCE 300 150 200 100 -30 100 50 -40 0 -20 -50 -0.15 -0.05 0.05 0.15 0.25 time (S) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175C using Fig. CT.4 9 250 -100 -5.00 ICE (A) QRR 20 0 0.00 5.00 -50 10.00 time (S) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25C using Fig. CT.3 2017-08-25 AUIRGP4062D/AUIRGP4062D-E TO-247AC Package Outline (Dimensions are shown in millimeters (inches)) TO-247AC Part Marking Information Part Number AUIRGP4062D YWWA IR Logo XX Date Code Y = Year WW = Work Week A = Automotive, Lead Free XX Lot Code TO-247AD package is not recommended for Surface Mount Application. 10 2017-08-25 AUIRGP4062D/AUIRGP4062D-E TO-247AD Package Outline (Dimensions are shown in millimeters (inches)) TO-247AD Part Marking Information Part Number AUIRGP4062D-E YWWA IR Logo XX Date Code Y = Year WW = Work Week A = Automotive, Lead Free XX Lot Code TO-247AD package is not recommended for Surface Mount Application. 11 2017-08-25 AUIRGP4062D/AUIRGP4062D-E Qualification Information Automotive (per AEC-Q101) This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. Qualification Level Moisture Sensitivity Level TO-247AC N/A TO-247AD Class M4(+/ 400V) AEC-Q101-002 Class H2(+/ 2000V) AEC-Q101-001 Class C5 (+/ 1000V) AEC-Q101-005 Machine Model Human Body Model ESD Charged Device Model Yes RoHS Compliant Highest passing voltage. Revision History Date 8/24/2017 Comments Updated datasheet with corporate template Corrected package outline -TO-247AD on page 11 Corrected part marking on pages 10,11 Published by Infineon Technologies AG 81726 Munchen, Germany (c) Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 12 2017-08-25