MOTOROLA SEMICONDUCTOR TECHNICAL DATA The RF Line NPN Silicon Push-Pull RF Power Transistor Designed primarily for wideband large-signal output and driver amplifier Stages in the 30 to 500 MHz frequency range. Specified 28 Volt, 400 MHz Characteristics Output Power = 125 W Typical Gain = 10 dB Efficiency = 55% (Typ) * Built-In Input Impedance Matching Networks for Broadband Operation Push-Pull Configuration Reduces Even Numbered Harmonics * Gold Metallization System for High Reliability * 100% Tested for Load Mismatch e Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ. | 4 6>_+4 | | | 5,8 1,4 | | 7 TTA Le, | Lo The MRF392 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation ina push-pull configuration. PUSH-PULL TRANSISTORS MAXIMUM RATINGS _ MRF392 125 W, 30 to 500 MHz CONTROLLED Q BROADBAND PUSH-PULL RF POWER TRANSISTOR NPN SILICON CASE 744A-01, STYLE 1 Rating Symbol Value Unit CollectorEmitter Voltage VcEO 30 Vde CollectorBase Voltage VcBo 60 Vde EmitterBase Voltage VEBO 4.0 Vde Collector Current Continuous Io 16 Adc Total Device Dissipation @ Tc = 25C (1) Pp 270 Watts Derate above 25C 1.54 WiC Storage Temperature Range Tetg -65 to +150 C Junction Temperature Ty 200 c THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case Rec 0.65 C/W NOTE: 1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push-pull amplifier. REV 8 MRF392 MOTOROLA RF DEVICE DATA 2-434ELECTRICAL CHARACTERISTICS (Tc = 25C unless otherwise noted) he | Characteristic | Symbol | Min Typ Max Unit OFF CHARACTERISTICS (1) Collector-Emitter Breakdown Voltage (Ic = 50 mAdc, Ip = 0) ViBR)CEO 30 _ Vde Collector-Emitter Breakdown Voltage (Io = 50 mAdc, Vee = 0) ViBR)CES 60 _ _ Vdc Emitter-Base Breakdown Voitage (Ie = 5.0 mAdc, Ic = 0) ViBR)EBO 4.0 _ _ Vde Collector Cutoff Current (Vcg = 30 Vde, le = 0) IcBo _ _ 5.0 mAdc ON CHARACTERISTICS (1) DC Current Gain (Ig = 1.0 Ade, Vog = 5.0 Vdc) | hee | 40 60 | 100 | _ | DYNAMIC CHARACTERISTICS (1) : | Output Capacitance (Vcg = 28 Vde, Ir = 0, f = 1.0 MHz) | Cob | | 75 | 95 pF | FUNCTIONAL TESTS (2) See Figure 1 ; CommonEmitter Amplifier Power Gain Gpe 8.0 10 _ dB (Voc = 28 Vde, Pout = 125 W, f = 400 MHz) Collector Efficiency n 50 55 _ % (Vcc = 28 Vdc, Pot = 125 W, f = 400 MHz) Load Mismatch . . (Voc = 28 Vde, Poy = 125 W, f = 400 MHz, No Degradation in Output Power VSWR = 30:1, all phase angles) NOTES: 1. Each transistor chip measured separately. / 2. Both transistor chips operating in push-pull amplifier. L5 + eT vyy tT 8 V A c a C ok c = C18 * T a} T 12 T 14 T 1 B2 23 C9 C6-m C7 C8 = = Ci0 L4 L6 LV. __1 Ci, C2 240 pF, 100 Mil Chip Cap (ATC) or Equivalent C3 3.6 pF, 100 Mil Chip Cap (ATC) or Equivalent C4, C8 8.2 pF, 100 Mil Chip Cap (ATC)-or Equivalent . C5, C6 20 pF, 100 Mil Chip Cap (ATC) or Equivalent C7 18 pF, Mini Unelco or Equivalent _ C9, C10 270 pF, 100 Mil Chip Cap (ATC) or Equivalent C11, C12, C16, C17 470 pF 100 Mil Chip Cap (ATC) or Equivalent C13, C18 680 pF Feedthru C14, C19 0.1 uF Erie Redcap or Equivalent C15 20 uF, 50 V L1, L2 0.15 pH Molded Choke With Ferrite Bead L3, L4 2~1/2 Turns #20 AWG, 0.200 ID L5, L6 3-1/2 Turns #18 AWG, 0.200 ID oy ony C18 cmp B1 Balun, 50 2 Semi-Rigid Coaxial Cable 86 Mil OD, 2 L B2 Balun, 50 Q Semi-Rigid Coaxial Cable 86 Mil OD, 2 L Z1 Microstrip Line 270 Mil L x 125 Mil W Z2 Microstrip Line 375 Mil L x 125 Mil W 23 Microstrip Line 280 Mil L x 125 Mil W 24 Microstrip Line 300 Mil L x 125 Mil W 25 Microstrip Line 350 Mil L x 125 Mil W Z6 Microstrip Line 365 Mil L x 125 Mil W Board Material 0.0625 Tefton Fiberglass e, = 2.5 + 0.05 1 oz. Cu. CLAD, Double Sided Figure 1. 400 MHz Test Fixture MOTOROLA RF DEVICE DATA MRF392 2-435. 1100 Me fis | "20 ZA 500 MHz +00 | L\ 7 LA 80 [ f Va wot LL Le TZ s re Voc = 28 V A 80 0 +00 Mi L a i 225 MHz 400 MHz =< 60 E 30 [ LAR Sal ft LALA 5 | AZ nA 27] jf Veo = 13.5 V V. 0 5 10 15 20 25 0 2 4 6 8 10 12 14 16 18 20 P.,, INPUT POWER (WATTS) Figure 2. Output Power versus Input Power Pia, INPUT POWER (WATTS) Figure 3. Output Power versus Input Power 160 7 160 1 Pig = 10 W Pin= 14W 140 , _. 140 120 ia TWH 120 tow = 100 7a al oc 100 | a | 4 La La sw | Ly 7W 80 ae & 80 a _ er 60 | wa pee 2 60 el _ r | 3 ar 20 f = 225 MHz 20 f= 400 MHz 8) OL 10 12 14 16 18 20 22 2426 28 30 10 12 14 16 18 20 22 24086 28 30 Voc, SUPPLY VOLTAGE (VOLTS) Voc, SUPPLY VOLTAGE (VOLTS) Figure 4. Output Power versus Supply Voltage Figure 5. Output Power versus Supply Voltage Zin & ZoL are given from basetobase and 7 collectortocollector respectively. f= 100 MHz 37 95 500 CAPACITIVE 400 : Zin INDUCTIVE REACTANCE z 450 REACTANCE COMPONENT (4X) 400 Voc = 28 V, Pou = 125 W f Zin Zou" f= 100 MHz MHz OHMS OHMS Ar 100 072+j0.44- | 90-60 in 225 0.72 + |2.62 52-j18 Zo = 20.0 itsett 400 3.88 + |5.72 3.6 + 0.53 appt 450 3.84 + 2.8 3.2+]1.2 3 500 1.26 + [3.04 3.0 +j2.0 j 3 eK sa Zo." = Conjugate of the optimum load impedance 3 x 14 into which the device output operates at a PX rh given output power, voltage and frequency. Figure 6. Series Equivalent Input/Output Impedance MRF392 MOTOROLA RF DEVICE DATA 2-436 { i { sand th ia i