K60P144M100SF2
K60 Sub-Family Data Sheet
Supports the following:
MK60DN256ZVLQ10,
MK60DX256ZVLQ10,
MK60DN512ZVLQ10,
MK60DN256ZVMD10,
MK60DX256ZVMD10,
MK60DN512ZVMD10
Features
Operating Characteristics
Voltage range: 1.71 to 3.6 V
Flash write voltage range: 1.71 to 3.6 V
Temperature range (ambient): -40 to 105°C
Performance
Up to 100 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
Memories and memory interfaces
Up to 512 KB program flash memory on non-
FlexMemory devices
Up to 256 KB program flash memory on
FlexMemory devices
Up to 256 KB FlexNVM on FlexMemory devices
4 KB FlexRAM on FlexMemory devices
Up to 128 KB RAM
Serial programming interface (EzPort)
FlexBus external bus interface
Clocks
3 to 32 MHz crystal oscillator
32 kHz crystal oscillator
Multi-purpose clock generator
System peripherals
10 low-power modes to provide power optimization
based on application requirements
Memory protection unit with multi-master
protection
16-channel DMA controller, supporting up to 64
request sources
External watchdog monitor
Software watchdog
Low-leakage wakeup unit
Security and integrity modules
Hardware CRC module to support fast cyclic
redundancy checks
Hardware random-number generator
Hardware encryption supporting DES, 3DES, AES,
MD5, SHA-1, and SHA-256 algorithms
128-bit unique identification (ID) number per chip
Human-machine interface
Low-power hardware touch sensor interface (TSI)
General-purpose input/output
Analog modules
Two 16-bit SAR ADCs
Programmable gain amplifier (PGA) (up to x64)
integrated into each ADC
Two 12-bit DACs
Three analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
Voltage reference
Timers
Programmable delay block
Eight-channel motor control/general purpose/PWM
timer
Two 2-channel quadrature decoder/general purpose
timers
IEEE 1588 timers
Periodic interrupt timers
16-bit low-power timer
Carrier modulator transmitter
Real-time clock
Freescale Semiconductor Document Number: K60P144M100SF2
Data Sheet: Technical Data Rev. 6, 9/2011
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2010–2011 Freescale Semiconductor, Inc.
Communication interfaces
Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
USB full-/low-speed On-the-Go controller with on-chip transceiver
Two Controller Area Network (CAN) modules
Three SPI modules
Two I2C modules
Six UART modules
Secure Digital host controller (SDHC)
I2S module
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
2 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................5
1.1 Determining valid orderable parts......................................5
2 Part identification......................................................................5
2.1 Description.........................................................................5
2.2 Format...............................................................................5
2.3 Fields.................................................................................5
2.4 Example............................................................................6
3Terminology and guidelines......................................................6
3.1 Definition: Operating requirement......................................6
3.2 Definition: Operating behavior...........................................7
3.3 Definition: Attribute............................................................7
3.4 Definition: Rating...............................................................8
3.5 Result of exceeding a rating..............................................8
3.6 Relationship between ratings and operating
requirements......................................................................8
3.7 Guidelines for ratings and operating requirements............9
3.8 Definition: Typical value.....................................................9
3.9 Typical value conditions....................................................10
4 Ratings......................................................................................10
4.1 Thermal handling ratings...................................................11
4.2 Moisture handling ratings..................................................11
4.3 ESD handling ratings.........................................................11
4.4 Voltage and current operating ratings...............................11
5 General.....................................................................................12
5.1 AC electrical characteristics..............................................12
5.2 Nonswitching electrical specifications...............................12
5.2.1 Voltage and current operating requirements......13
5.2.2 LVD and POR operating requirements...............14
5.2.3 Voltage and current operating behaviors............14
5.2.4 Power mode transition operating behaviors.......15
5.2.5 Power consumption operating behaviors............16
5.2.6 EMC radiated emissions operating behaviors....19
5.2.7 Designing with radiated emissions in mind.........20
5.2.8 Capacitance attributes........................................20
5.3 Switching specifications.....................................................20
5.3.1 Device clock specifications.................................20
5.3.2 General switching specifications.........................21
5.4 Thermal specifications.......................................................21
5.4.1 Thermal operating requirements.........................21
5.4.2 Thermal attributes...............................................22
6 Peripheral operating requirements and behaviors....................23
6.1 Core modules....................................................................23
6.1.1 Debug trace timing specifications.......................23
6.1.2 JTAG electricals..................................................24
6.2 System modules................................................................27
6.3 Clock modules...................................................................27
6.3.1 MCG specifications.............................................27
6.3.2 Oscillator electrical specifications.......................29
6.3.3 32kHz Oscillator Electrical Characteristics.........31
6.4 Memories and memory interfaces.....................................32
6.4.1 Flash (FTFL) electrical specifications.................32
6.4.2 EzPort Switching Specifications.........................37
6.4.3 Flexbus Switching Specifications........................38
6.5 Security and integrity modules..........................................41
6.6 Analog...............................................................................41
6.6.1 ADC electrical specifications..............................41
6.6.2 CMP and 6-bit DAC electrical specifications......49
6.6.3 12-bit DAC electrical characteristics...................52
6.6.4 Voltage reference electrical specifications..........55
6.7 Timers................................................................................56
6.8 Communication interfaces.................................................56
6.8.1 Ethernet switching specifications........................56
6.8.2 USB electrical specifications...............................58
6.8.3 USB DCD electrical specifications......................58
6.8.4 USB VREG electrical specifications...................59
6.8.5 CAN switching specifications..............................59
6.8.6 DSPI switching specifications (limited voltage
range).................................................................60
6.8.7 DSPI switching specifications (full voltage
range).................................................................61
6.8.8 I2C switching specifications................................63
6.8.9 UART switching specifications............................63
6.8.10 SDHC specifications...........................................63
6.8.11 I2S switching specifications................................64
6.9 Human-machine interfaces (HMI)......................................66
6.9.1 TSI electrical specifications................................66
7 Dimensions...............................................................................67
7.1 Obtaining package dimensions.........................................67
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 3
8 Pinout........................................................................................68
8.1 K60 Signal Multiplexing and Pin Assignments..................68
8.2 K60 Pinouts.......................................................................74
9 Revision History........................................................................76
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
4 Freescale Semiconductor, Inc.
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK60 and MK60.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K60
A Key attribute D = Cortex-M4 w/ DSP
F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
Table continues on the next page...
Ordering parts
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 5
Field Description Values
FFF Program flash memory size 32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
R Silicon revision Z = Initial
(Blank) = Main
A = Revision after main
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
EX = 64 LQFN (9 mm x 9 mm)
LH = 64 LQFP (10 mm x 10 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MF = 196 MAPBGA (15 mm x 15 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CC Maximum CPU frequency (MHz) 5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
2.4 Example
This is an example part number:
MK60DN512ZVMD10
3 Terminology and guidelines
Terminology and guidelines
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
6 Freescale Semiconductor, Inc.
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
0.9 1.1 V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol Description Min. Max. Unit
IWP Digital I/O weak pullup/
pulldown current
10 130 µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
Terminology and guidelines
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 7
3.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol Description Min. Max. Unit
VDD 1.0 V core supply
voltage
–0.3 1.2 V
3.5 Result of exceeding a rating
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
Terminology and guidelines
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
8 Freescale Semiconductor, Inc.
3.6 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal
operating
range
Limited
operating
range
Limited
operating
range
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Fatal
range
- Probable permanent failure
Limited
operating
range
Limited
operating
range
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Handling range
- No permanent failure
Fatal
range
- Probable permanent failure
Operating or handling rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating or handling rating (min.)
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Terminology and guidelines
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 9
Symbol Description Min. Typ. Max. Unit
IWP Digital I/O weak
pullup/pulldown
current
10 70 130 µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
0.90 0.95 1.00 1.05 1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD (V)
I(μA)
DD_STOP
TJ
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD 3.3 V supply voltage 3.3 V
4 Ratings
Ratings
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
10 Freescale Semiconductor, Inc.
4.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
Solder temperature, leaded 245
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
IDD Digital supply current 185 mA
VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V
Table continues on the next page...
Ratings
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 11
Symbol Description Min. Max. Unit
VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V
IDInstantaneous maximum current single pin limit (applies to all
port pins)
–25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB_DP USB_DP input voltage –0.3 3.63 V
VUSB_DM USB_DM input voltage –0.3 3.63 V
VREGIN USB regulator input –0.3 6.0 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
have CL=30pF loads,
are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
have their passive filter disabled (PORTx_PCRn[PFE]=0)
5.2 Nonswitching electrical specifications
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
12 Freescale Semiconductor, Inc.
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICDIO Digital pin negative DC injection current — single pin
VIN < VSS-0.3V -5 mA
1
IICAIO Analog2, EXTAL, and XTAL pin DC injection current
— single pin
VIN < VSS-0.3V (Negative current injection)
VIN > VDD+0.3V (Positive current injection)
-5
+5
mA
3
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
Negative current injection
Positive current injection
-25
+25
mA
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode
connection to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection
current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 13
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
±80 mV
VLVDL Falling low-voltage detect threshold — low range
(LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
±60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
14 Freescale Semiconductor, Inc.
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Max. Unit Notes
VOH Output high voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
VDD – 0.5
V
V
Output high voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
VOL Output low voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
0.5
0.5
V
V
Output low voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
IIN Input leakage current (per pin) for full temperature
range
1 μA 1
IIN Input leakage current (per pin) at 25°C 0.025 μA 1
IOZ Hi-Z (off-state) leakage current (per pin) 1 μA
RPU Internal pullup resistors 20 50 2
RPD Internal pulldown resistors 20 50 3
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table
assume this clock configuration:
CPU and system clocks = 100 MHz
Bus clock = 50 MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 15
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
300 μs 1
VLLS1 RUN 112 μs
VLLS2 RUN 74 μs
VLLS3 RUN 73 μs
LLS RUN 5.9 μs
VLPS RUN 5.8 μs
STOP RUN 4.2 μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V
@ 3.0V
45
47
70
72
mA
mA
2
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
@ 3.0V
@ 25°C
@ 125°C
61
63
72
85
71
87
mA
mA
mA
3, 4
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
35 mA 2
IDD_WAIT Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
15 mA 5
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
N/A mA 6
Table continues on the next page...
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
16 Freescale Semiconductor, Inc.
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
N/A mA 7
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
N/A mA 8
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.59
2.26
5.94
1.4
7.9
19.2
mA
mA
mA
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
93
520
1350
435
2000
4000
μA
μA
μA
IDD_LLS Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
4.8
28
126
20
68
270
μA
μA
μA
9
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
3.1
17
82
8.9
35
148
μA
μA
μA
9
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
2.2
7.1
41
5.4
12.5
125
μA
μA
μA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
2.1
6.2
30
7.6
13.5
46
μA
μA
μA
IDD_VBAT Average current with RTC and 32kHz disabled at
3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.33
0.60
1.97
0.39
0.78
2.9
μA
μA
μA
Table continues on the next page...
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 17
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_VBAT Average current when CPU is not accessing
RTC registers
@ 1.8V
@ –40 to 25°C
@ 70°C
@ 105°C
@ 3.0V
@ –40 to 25°C
@ 70°C
@ 105°C
0.71
1.01
2.82
0.84
1.17
3.16
0.81
1.3
4.3
0.94
1.5
4.6
μA
μA
μA
μA
μA
μA
10
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.
All peripheral clocks disabled.
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled. Code executing from flash.
7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
enabled but peripherals are not in active operation. Code executing from flash.
8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled.
9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.
10. Includes 32kHz oscillator current and RTC operation.
5.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater
than 50 MHz frequencies
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFL
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
18 Freescale Semiconductor, Inc.
Figure 2. Run mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 144LQFP
Symbol Description Frequency
band (MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 23 dBμV 1, 2
VRE2 Radiated emissions voltage, band 2 50–150 27 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 28 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 14 dBμV
VRE_IEC IEC level 0.15–1000 K 2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 19
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol Description Min. Max. Unit Notes
Normal run mode
fSYS System and core clock 100 MHz
fSYS_USB System and core clock when Full Speed USB in
operation
20 MHz
fENET System and core clock when ethernet in operation
10 Mbps
100 Mbps
5
50
MHz
fBUS Bus clock 50 MHz
FB_CLK FlexBus clock 50 MHz
fFLASH Flash clock 25 MHz
fLPTMR LPTMR clock 25 MHz
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
20 Freescale Semiconductor, Inc.
5.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, IEEE 1588 timer, and I2C signals.
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100 ns 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16 ns 2
External reset pulse width (digital glitch filter disabled) 100 ns 2
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
3
Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
12
6
36
24
ns
ns
ns
ns
4
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75pF load
4. 15pF load
5.4 Thermal specifications
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 21
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol Description Min. Max. Unit
TJDie junction temperature –40 125 °C
TAAmbient temperature –40 105 °C
5.4.2 Thermal attributes
Board type Symbol Description 144 LQFP 144
MAPBGA Unit Notes
Single-layer
(1s)
RθJA Thermal
resistance,
junction to
ambient (natural
convection)
45 48 °C/W 1
Four-layer
(2s2p)
RθJA Thermal
resistance,
junction to
ambient (natural
convection)
36 29 °C/W 1
Single-layer
(1s)
RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
36 38 °C/W 1
Four-layer
(2s2p)
RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
30 25 °C/W 1
RθJB Thermal
resistance,
junction to
board
24 16 °C/W 2
RθJC Thermal
resistance,
junction to case
9 9 °C/W 3
ΨJT Thermal
characterization
parameter,
junction to
package top
outside center
(natural
convection)
2 2 °C/W 4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
General
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
22 Freescale Semiconductor, Inc.
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 Debug trace timing specifications
Table 12. Debug trace operating behaviors
Symbol Description Min. Max. Unit
Tcyc Clock period Frequency dependent MHz
Twl Low pulse width 2 ns
Twh High pulse width 2 ns
TrClock and data rise time 3 ns
TfClock and data fall time 3 ns
TsData setup 3 ns
ThData hold 2 ns
Figure 3. TRACE_CLKOUT specifications
Th
Ts Ts Th
TRACE_CLKOUT
TRACE_D[3:0]
Figure 4. Trace data specifications
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 23
6.1.2 JTAG electricals
Table 13. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
25
50
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
20
10
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 0 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 17 ns
J12 TCLK low to TDO high-Z 17 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 14. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
20
40
MHz
J2 TCLK cycle period 1/J1 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
24 Freescale Semiconductor, Inc.
Table 14. JTAG full voltage range electricals (continued)
Symbol Description Min. Max. Unit
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
25
12.5
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 0 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.4 ns
J11 TCLK low to TDO data valid 22.1 ns
J12 TCLK low to TDO high-Z 22.1 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
J2
J3 J3
J4 J4
TCLK (input)
Figure 5. Test clock input timing
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 25
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 6. Boundary scan (JTAG) timing
Figure 7. Test Access Port timing
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
26 Freescale Semiconductor, Inc.
J14
J13
TCLK
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 15. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
fints_t Internal reference frequency (slow clock) — user
trimmed
31.25 38.2 kHz
Iints Internal reference (slow clock) current 20 µA
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 4.5 %fdco 1
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
fintf_t Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3 5 MHz
Iintf Internal reference (fast clock) current 25 µA
floc_low Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
kHz
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 27
Table 15. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 2, 3
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX3
2
DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 4, 5
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10)
2197 × ffll_ref
71.99 MHz
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Jcyc_fll FLL period jitter
fVCO = 48 MHz
fVCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 6
PLL
fvco VCO operating frequency 48.0 100 MHz
Ipll PLL operating current
PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
1060 µA 7
Ipll PLL operating current
PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
600 µA 7
fpll_ref PLL reference frequency range 2.0 4.0 MHz
Jcyc_pll PLL period jitter (RMS)
fvco = 48 MHz
fvco = 100 MHz
120
50
ps
ps
8
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
28 Freescale Semiconductor, Inc.
Table 15. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 48 MHz
fvco = 100 MHz
1350
600
ps
ps
8
Dlock Lock entry frequency tolerance ± 1.49 ± 2.98 %
Dunl Lock exit frequency tolerance ± 4.47 ± 5.97 %
tpll_lock Lock detector detection time 150 × 10-6
+ 1075(1/
fpll_ref)
s9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1 Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
500
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 29
Table 16. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDDOSC Supply current — high gain mode (HGO=1)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
25
400
500
2.5
3
4
μA
μA
μA
mA
mA
mA
1
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-power
mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain mode
(HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
0
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.
4. When low power mode is selected, RF is integrated and must not be attached externally.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
30 Freescale Semiconductor, Inc.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2 Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz 1, 2
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
750 ms 3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
250 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it
remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1 32kHz oscillator DC electrical specifications
Table 18. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 31
Table 18. 32kHz oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
Cpara Parasitical capacitance of EXTAL32 and XTAL32 5 7 pF
Cload Internal load capacitance (programmable) 15 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to
any other devices.
6.3.3.2 32kHz oscillator frequency specifications
Table 19. 32kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
1. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
6.4.1 Flash (FTFL) electrical specifications
This section describes the electrical characteristics of the FTFL module.
6.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm4 Longword Program high-voltage time 7.5 18 μs
thversscr Sector Erase high-voltage time 13 113 ms 1
thversblk256k Erase Block high-voltage time for 256 KB 416 3616 ms 1
1. Maximum time based on expectations at cycling end-of-life.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
32 Freescale Semiconductor, Inc.
6.4.1.2 Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
trd1blk256k
Read 1s Block execution time
256 KB program/data flash
1.7
ms
trd1sec2k Read 1s Section execution time (flash sector) 60 μs 1
tpgmchk Program Check execution time 45 μs 1
trdrsrc Read Resource execution time 30 μs 1
tpgm4 Program Longword execution time 65 145 μs
tersblk256k
Erase Flash Block execution time
256 KB program/data flash
435
3700
ms
2
tersscr Erase Flash Sector execution time 14 114 ms 2
tpgmsec512
tpgmsec1k
tpgmsec2k
Program Section execution time
512 B flash
1 KB flash
2 KB flash
2.4
4.7
9.3
ms
ms
ms
trd1all Read 1s All Blocks execution time 1.8 ms
trdonce Read Once execution time 25 μs 1
tpgmonce Program Once execution time 65 μs
tersall Erase All Blocks execution time 870 7400 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
tswapx01
tswapx02
tswapx04
tswapx08
Swap Control execution time
control code 0x01
control code 0x02
control code 0x04
control code 0x08
200
70
70
150
150
30
μs
μs
μs
μs
tpgmpart256k
Program Partition for EEPROM execution time
256 KB FlexNVM
450
ms
tsetramff
tsetram32k
tsetram256k
Set FlexRAM Function execution time:
Control Code 0xFF
32 KB EEPROM backup
256 KB EEPROM backup
70
0.8
4.5
1.2
5.5
μs
ms
ms
Byte-write to FlexRAM for EEPROM operation
teewr8bers Byte-write to erased FlexRAM location execution
time
175 260 μs 3
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 33
Table 21. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
teewr8b32k
teewr8b64k
teewr8b128k
teewr8b256k
Byte-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
385
475
650
1000
1800
2000
2400
3200
μs
μs
μs
μs
Word-write to FlexRAM for EEPROM operation
teewr16bers Word-write to erased FlexRAM location
execution time
175 260 μs
teewr16b32k
teewr16b64k
teewr16b128k
teewr16b256k
Word-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
385
475
650
1000
1800
2000
2400
3200
μs
μs
μs
μs
Longword-write to FlexRAM for EEPROM operation
teewr32bers Longword-write to erased FlexRAM location
execution time
360 540 μs
teewr32b32k
teewr32b64k
teewr32b128k
teewr32b256k
Longword-write to FlexRAM execution time:
32 KB EEPROM backup
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
630
810
1200
1900
2050
2250
2675
3500
μs
μs
μs
μs
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
6.4.1.3 Flash (FTFL) current and power specfications
Table 22. Flash (FTFL) current and power specfications
Symbol Description Typ. Unit
IDD_PGM Worst case programming current in program flash 10 mA
6.4.1.4 Reliability specifications
Table 23. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles 5 50 years 2
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
34 Freescale Semiconductor, Inc.
Table 23. NVM reliability specifications (continued)
Symbol Description Min. Typ.1Max. Unit Notes
tnvmretp1k Data retention after up to 1 K cycles 10 100 years 2
tnvmretp100 Data retention after up to 100 cycles 15 100 years 2
nnvmcycp Cycling endurance 10 K 35 K cycles 3
Data Flash
tnvmretd10k Data retention after up to 10 K cycles 5 50 years 2
tnvmretd1k Data retention after up to 1 K cycles 10 100 years 2
tnvmretd100 Data retention after up to 100 cycles 15 100 years 2
nnvmcycd Cycling endurance 10 K 35 K cycles 3
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance 5 50 years 2
tnvmretee10 Data retention up to 10% of write endurance 10 100 years 2
tnvmretee1 Data retention up to 1% of write endurance 15 100 years 2
nnvmwree16
nnvmwree128
nnvmwree512
nnvmwree4k
nnvmwree32k
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 128
EEPROM backup to FlexRAM ratio = 512
EEPROM backup to FlexRAM ratio = 4096
EEPROM backup to FlexRAM ratio =
32,768
35 K
315 K
1.27 M
10 M
80 M
175 K
1.6 M
6.4 M
50 M
400 M
writes
writes
writes
writes
writes
4
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology.
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and
typical values assume all byte-writes to FlexRAM.
6.4.1.5 Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 35
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout the
entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem = × Write_efficiency × n
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE nvmcycd
where
Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;
entered with Program Partition command
EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition
command
Write_efficiency —
0.25 for 8-bit writes to FlexRAM
0.50 for 16-bit or 32-bit writes to FlexRAM
nnvmcycd — data flash cycling endurance
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
36 Freescale Semiconductor, Inc.
Figure 9. EEPROM backup writes to FlexRAM
6.4.2 EzPort Switching Specifications
Table 24. EzPort switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid 16 ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 37
EP2
EP3 EP4
EP5 EP6
EP7 EP8
EP9
EZP_CK
EZP_CS
EZP_Q (output)
EZP_D (input)
Figure 10. EzPort Timing Diagram
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be
the same as the internal system bus frequency or an integer divider of that frequency.
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be
derived from these values.
Table 25. Flexbus limited voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 20 ns
FB2 Address, data, and control output valid 11.5 ns 1
FB3 Address, data, and control output hold 0.5 ns 1
FB4 Data and FB_TA input setup 8.5 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
38 Freescale Semiconductor, Inc.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 26. Flexbus full voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 1/FB_CLK ns
FB2 Address, data, and control output valid 13.5 ns 1
FB3 Address, data, and control output hold 0 ns 1
FB4 Data and FB_TA input setup 13.7 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 39
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB5
FB4
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Figure 11. FlexBus read timing diagram
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
40 Freescale Semiconductor, Inc.
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Figure 12. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 41
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and
ADCx_DM3.
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are
not direct device pins. Accuracy specifications for these pins are defined in Table 29 and
Table 30.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1 16-bit ADC operating conditions
Table 27. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD-
VDDA)
-100 0 +100 mV 2
ΔVSSA Ground voltage Delta to VSS (VSS-
VSSA)
-100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL Reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage VREFL VREFH V
CADIN Input
capacitance
16 bit modes
8/10/12 bit
modes
8
4
10
5
pF
RADIN Input resistance 2 5
RAS Analog source
resistance
13/12 bit modes
fADCK < 4MHz
5
3
fADCK ADC conversion
clock frequency
≤ 13 bit modes
1.0
18.0
MHz
4
fADCK ADC conversion
clock frequency
16 bit modes
2.0
12.0
MHz
4
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
42 Freescale Semiconductor, Inc.
Table 27. 16-bit ADC operating conditions (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
Crate ADC conversion
rate
≤ 13 bit modes
No ADC hardware
averaging
Continuous
conversions enabled,
subsequent conversion
time
20.000
818.330
Ksps
5
Crate ADC conversion
rate
16 bit modes
No ADC hardware
averaging
Continuous
conversions enabled,
subsequent conversion
time
37.037
461.467
Ksps
5
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/
CAS time constant should be kept to <1ns.
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
RAS
VAS
CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad
leakage
due to
input
protection
INPUT PININPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Figure 13. ADC input impedance equivalency diagram
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 43
6.6.1.2 16-bit ADC electrical characteristics
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
fADACK
ADC
asynchronous
clock source
ADLPC=1, ADHSC=0
ADLPC=1, ADHSC=1
ADLPC=0, ADHSC=0
ADLPC=0, ADHSC=1
1.2
3.0
2.4
4.4
2.4
4.0
5.2
6.2
3.9
7.3
6.1
9.5
MHz
MHz
MHz
MHz
tADACK = 1/
fADACK
Sample Time See Reference Manual chapter for sample times
TUE Total unadjusted
error
12 bit modes
<12 bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12 bit modes
<12 bit modes
±0.7
±0.2
-1.1 to
+1.9
-0.3 to 0.5
LSB45
INL Integral non-
linearity
12 bit modes
<12 bit modes
±1.0
±0.5
-2.7 to
+1.9
-0.7 to
+0.5
LSB45
EFS Full-scale error 12 bit modes
<12 bit modes
-4
-1.4
-5.4
-1.8
LSB4VADIN =
VDDA
5
EQQuantization
error
16 bit modes
≤13 bit modes
-1 to 0
±0.5
LSB4
ENOB Effective number
of bits
16 bit differential mode
Avg=32
Avg=4
16 bit single-ended mode
Avg=32
Avg=4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise
plus distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16 bit differential mode
Avg=32
16 bit single-ended mode
Avg=32
–94
-85
dB
dB
7
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
44 Freescale Semiconductor, Inc.
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
SFDR Spurious free
dynamic range
16 bit differential mode
Avg=32
16 bit single-ended mode
Avg=32
82
78
95
90
dB
dB
7
EIL Input leakage
error
IIn × RAS mV IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
Temp sensor
slope
–40°C to 105°C 1.715 mV/°C
VTEMP25 Temp sensor
voltage
25°C 719 mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 45
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
46 Freescale Semiconductor, Inc.
6.6.1.3 16-bit ADC with PGA operating conditions
Table 29. 16-bit ADC with PGA operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
VREFPGA PGA ref voltage VREF_OU
T
VREF_OU
T
VREF_OU
T
V2, 3
VADIN Input voltage VSSA VDDA V
VCM Input Common
Mode range
VSSA VDDA V
RPGAD Differential input
impedance
Gain = 1, 2, 4, 8
Gain = 16, 32
Gain = 64
128
64
32
IN+ to IN-4
RAS Analog source
resistance
100 Ω 5
TSADC sampling
time
1.25 µs 6
Crate ADC conversion
rate
≤ 13 bit modes
No ADC hardware
averaging
Continuous
conversions enabled
Peripheral clock = 50
MHz
18.484 450 Ksps 7
16 bit modes
No ADC hardware
averaging
Continuous
conversions enabled
Peripheral clock = 50
MHz
37.037 250 Ksps 8
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREF_OUT)
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other
than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is RPGAD/2
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock.
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 47
6.6.1.4 16-bit ADC with PGA characteristics
Table 30. 16-bit ADC with PGA characteristics
Symbol Description Conditions Min. Typ.1Max. Unit Notes
IDDA_PGA Supply current Low power
(ADC_PGA[PGALPb]=0)
420 644 μA 2
IDC_PGA Input DC current A 3
Gain =1, VREFPGA=1.2V,
VCM=0.5V
1.54 μA
Gain =64, VREFPGA=1.2V,
VCM=0.1V
0.57 μA
GGain4 PGAG=0
PGAG=1
PGAG=2
PGAG=3
PGAG=4
PGAG=5
PGAG=6
0.95
1.9
3.8
7.6
15.2
30.0
58.8
1
2
4
8
16
31.6
63.3
1.05
2.1
4.2
8.4
16.6
33.2
67.8
RAS < 100Ω
BW Input signal
bandwidth
16-bit modes
< 16-bit modes
4
40
kHz
kHz
PSRR Power supply
rejection ratio
Gain=1 -84 dB VDDA= 3V
±100mV,
fVDDA= 50Hz,
60Hz
CMRR Common mode
rejection ratio
Gain=1
Gain=64
-84
-85
dB
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
VOFS Input offset
voltage
0.2 mV Output offset =
VOFS*(Gain+1)
TGSW Gain switching
settling time
10 µs 5
EIL Input leakage
error
All modes IIn × RAS mV IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
VPP,DIFF Maximum
differential input
signal swing where VX = VREFPGA × 0.583
V6
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
48 Freescale Semiconductor, Inc.
Table 30. 16-bit ADC with PGA characteristics (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
SNR Signal-to-noise
ratio
Gain=1
Gain=64
80
52
90
66
dB
dB
16-bit
differential
mode,
Average=32
THD Total harmonic
distortion
Gain=1
Gain=64
85
49
100
95
dB
dB
16-bit
differential
mode,
Average=32,
fin=100Hz
SFDR Spurious free
dynamic range
Gain=1
Gain=64
85
53
105
88
dB
dB
16-bit
differential
mode,
Average=32,
fin=100Hz
ENOB Effective number
of bits
Gain=1, Average=4
Gain=64, Average=4
Gain=1, Average=32
Gain=2, Average=32
Gain=4, Average=32
Gain=8, Average=32
Gain=16, Average=32
Gain=32, Average=32
Gain=64, Average=32
11.6
7.2
12.8
11.0
7.9
7.3
6.8
6.8
7.5
13.4
9.6
14.5
14.3
13.8
13.1
12.5
11.5
10.6
bits
bits
bits
bits
bits
bits
bits
bits
bits
16-bit
differential
mode,fin=100H
z
SINAD Signal-to-noise
plus distortion
ratio
See ENOB 6.02 × ENOB + 1.76 dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. This current is a PGA module adder, in addition to and ADC conversion currents.
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong
function of input common mode voltage (VCM) and the PGA gain.
4. Gain = 2PGAG
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
6.6.2 CMP and 6-bit DAC electrical specifications
Table 31. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 49
Table 31. Comparator and 6-bit DAC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1,
PMODE=1)
20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1,
PMODE=0)
120 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
50 Freescale Semiconductor, Inc.
0.04
0.05
0.06
0.07
0.08
P Hystereris (V)
00
01
10
HYSTCTR
Setting
0
0.01
0.02
0.03
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
CM
10
11
Vin level (V)
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 51
0 08
0.1
0.12
0.14
0.16
0.18
P Hystereris (V)
00
01
10
HYSTCTR
Setting
0
0.02
0.04
0.06
0.08
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
CMP
10
11
Vin level (V)
Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1 12-bit DAC operating requirements
Table 32. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
TATemperature −40 105 °C
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
52 Freescale Semiconductor, Inc.
6.6.3.2 12-bit DAC operating behaviors
Table 33. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 150 μA
IDDA_DAC
HP
Supply current — high-speed mode 700 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-
speed mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA > = 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
Rop Output resistance load = 3 kΩ 250 Ω
SR Slew rate -80h F7Fh 80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
CT Channel to channel cross talk -80 dB
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0+100mV to VDACR−100 mV
3. The DNL is measured for 0+100 mV to VDACR−100 mV
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V
5. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 53
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set
to 0x800, Temp range from -40C to 105C
Figure 18. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
54 Freescale Semiconductor, Inc.
Figure 19. Offset at half scale vs. temperature
6.6.4 Voltage reference electrical specifications
Table 34. VREF full-range operating requirements
Symbol Description Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
TATemperature −40 105 °C
CLOutput load capacitance 100 nF 1
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 55
Table 35. VREF full-range operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
Vout Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.1965 1.2 1.2027 V
Vout Voltage reference output with— factory trim 1.1584 1.2376 V
Vstep Voltage reference trim step 0.5 mV
Vtdrift Temperature drift (Vmax -Vmin across the full
temperature range)
80 mV
Ibg Bandgap only (MODE_LV = 00) current 80 µA
Itr Tight-regulation buffer (MODE_LV =10) current 1.1 mA
ΔVLOAD Load regulation (MODE_LV = 10)
current = + 1.0 mA
current = - 1.0 mA
2
5
mV 1
Tstup Buffer startup time 100 µs
Vvdrift Voltage drift (Vmax -Vmin across the full voltage
range) (MODE_LV = 10, REGEN = 1)
2 mV
1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 36. VREF limited-range operating requirements
Symbol Description Min. Max. Unit Notes
TATemperature 0 50 °C
Table 37. VREF limited-range operating behaviors
Symbol Description Min. Max. Unit Notes
Vout Voltage reference output with factory trim 1.173 1.225 V
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
56 Freescale Semiconductor, Inc.
6.8.1 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
6.8.1.1 MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range of
transceiver devices.
Table 38. MII signal switching specifications
Symbol Description Min. Max. Unit
RXCLK frequency 25 MHz
MII1 RXCLK pulse width high 35% 65% RXCLK
period
MII2 RXCLK pulse width low 35% 65% RXCLK
period
MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 ns
MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 ns
TXCLK frequency 25 MHz
MII5 TXCLK pulse width high 35% 65% TXCLK
period
MII6 TXCLK pulse width low 35% 65% TXCLK
period
MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 ns
MII8 TXCLK to TXD[3:0], TXEN, TXER valid 25 ns
MII7MII8
Valid data
Valid data
Valid data
MII6 MII5
TXCLK (input)
TXD[n:0]
TXEN
TXER
Figure 20. MII transmit signal timing diagram
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 57
MII2 MII1
MII4MII3
Valid data
Valid data
Valid data
RXCLK (input)
RXD[n:0]
RXDV
RXER
Figure 21. MII receive signal timing diagram
6.8.1.2 RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range of
transceiver devices.
Table 39. RMII signal switching specifications
Num Description Min. Max. Unit
EXTAL frequency (RMII input clock RMII_CLK) 50 MHz
RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK
period
RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK
period
RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 ns
RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 ns
RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 ns
RMII8 RMII_CLK to TXD[1:0], TXEN valid 15 ns
6.8.2 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
58 Freescale Semiconductor, Inc.
6.8.3 USB DCD electrical specifications
Table 40. USB DCD electrical specifications
Symbol Description Min. Typ. Max. Unit
VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 0.7 V
VLGC Threshold voltage for logic high 0.8 2.0 V
IDP_SRC USB_DP source current 7 10 13 μA
IDM_SINK USB_DM sink current 50 100 150 μA
RDM_DWN D- pulldown resistance for data pin contact detect 14.25 24.8
VDAT_REF Data detect voltage 0.25 0.33 0.4 V
6.8.4 USB VREG electrical specifications
Table 41. USB VREG electrical specifications
Symbol Description Min. Typ.1Max. Unit Notes
VREGIN Input supply voltage 2.7 5.5 V
IDDon Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
120 186 μA
IDDstby Quiescent current — Standby mode, load
current equal zero
1.27 30 μA
IDDoff Quiescent current — Shutdown mode
VREGIN = 5.0 V and temperature=25C
Across operating voltage and temperature
650
4
nA
μA
ILOADrun Maximum load current — Run mode 120 mA
ILOADstby Maximum load current — Standby mode 1 mA
VReg33out Regulator output voltage — Input supply
(VREGIN) > 3.6 V
Run mode
Standby mode
3
2.1
3.3
2.8
3.6
3.6
V
V
VReg33out Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1 3.6 V 2
COUT External output capacitor 1.76 2.2 8.16 μF
ESR External output capacitor equivalent series
resistance
1 100
ILIM Short circuit current 290 mA
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 59
6.8.5 CAN switching specifications
See General switching specifications.
6.8.6 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 42. Master mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation 25 MHz
DS1 DSPI_SCK output cycle time 2 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
2
ns 1
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
2
ns 2
DS5 DSPI_SCK to DSPI_SOUT valid 8.5 ns
DS6 DSPI_SCK to DSPI_SOUT invalid −2 ns
DS7 DSPI_SIN to DSPI_SCK input setup 15 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 22. DSPI classic SPI timing — master mode
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
60 Freescale Semiconductor, Inc.
Table 43. Slave mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Frequency of operation 12.5 MHz
DS9 DSPI_SCK input cycle time 4 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS11 DSPI_SCK to DSPI_SOUT valid 10 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 14 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 14 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 23. DSPI classic SPI timing — slave mode
6.8.7 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 44. Master mode DSPI timing (full voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V 1
Frequency of operation 12.5 MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 61
Table 44. Master mode DSPI timing (full voltage range) (continued)
Num Description Min. Max. Unit Notes
DS1 DSPI_SCK output cycle time 4 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
4
ns 2
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
4
ns 3
DS5 DSPI_SCK to DSPI_SOUT valid 10 ns
DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 ns
DS7 DSPI_SIN to DSPI_SCK input setup 20.5 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
DSPI_PCSn
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
Figure 24. DSPI classic SPI timing — master mode
Table 45. Slave mode DSPI timing (full voltage range)
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Frequency of operation 6.25 MHz
DS9 DSPI_SCK input cycle time 8 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS11 DSPI_SCK to DSPI_SOUT valid 20 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 19 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
62 Freescale Semiconductor, Inc.
Table 45. Slave mode DSPI timing (full voltage range) (continued)
Num Description Min. Max. Unit
DS16 DSPI_SS inactive to DSPI_SOUT not driven 19 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
DSPI_SS
DSPI_SCK
(CPOL=0)
DSPI_SOUT
DSPI_SIN
Figure 25. DSPI classic SPI timing — slave mode
6.8.8 I2C switching specifications
See General switching specifications.
6.8.9 UART switching specifications
See General switching specifications.
6.8.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 46. SDHC switching specifications
Num Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Card input clock
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 63
Table 46. SDHC switching specifications
(continued)
Num Symbol Description Min. Max. Unit
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed) 0 25 MHz
fpp Clock frequency (MMC full speed) 0 20 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 6.5 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
SD2SD3 SD1
SD6
SD8
SD7
SDHC_CLK
Output SDHC_CMD
Output SDHC_DAT[3:0]
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 26. SDHC timing
6.8.11 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
64 Freescale Semiconductor, Inc.
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync
(I2S_FS) shown in the figures below.
Table 47. I2S master mode timing
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S1 I2S_MCLK cycle time 2 x tSYS ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_BCLK cycle time 5 x tSYS ns
S4 I2S_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_BCLK to I2S_FS output valid 15 ns
S6 I2S_BCLK to I2S_FS output invalid -2.5 ns
S7 I2S_BCLK to I2S_TXD valid 15 ns
S8 I2S_BCLK to I2S_TXD invalid -3 ns
S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 20 ns
S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 ns
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_BCLK (output)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 27. I2S timing — master mode
Table 48. I2S slave mode timing
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
S11 I2S_BCLK cycle time (input) 8 x tSYS ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 65
Table 48. I2S slave mode timing (continued)
Num Description Min. Max. Unit
S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period
S13 I2S_FS input setup before I2S_BCLK 10 ns
S14 I2S_FS input hold after I2S_BCLK 3 ns
S15 I2S_BCLK to I2S_TXD/I2S_FS output valid 20 ns
S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_BCLK 10 ns
S18 I2S_RXD hold after I2S_BCLK 2 ns
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_BCLK (input)
I2S_FS (output)
I2S_FS (input)
I2S_TXD
I2S_RXD
Figure 28. I2S timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 49. TSI electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDDTSI Operating voltage 1.71 3.6 V
CELE Target electrode capacitance range 1 20 500 pF 1
fREFmax Reference oscillator frequency 5.5 12.7 MHz 2
fELEmax Electrode oscillator frequency 0.5 4.0 MHz 3
CREF Internal reference capacitor 0.5 1 1.2 pF
VDELTA Oscillator delta voltage 100 600 760 mV 4
Table continues on the next page...
Peripheral operating requirements and behaviors
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
66 Freescale Semiconductor, Inc.
Table 49. TSI electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
IREF Reference oscillator current source base current
1uA setting (REFCHRG=0)
32uA setting (REFCHRG=31)
1.133
36
1.5
50
μA 3, 5
IELE Electrode oscillator current source base current
1uA setting (EXTCHRG=0)
32uA setting (EXTCHRG=31)
1.133
36
1.5
50
μA 3,6
Pres5 Electrode capacitance measurement precision 8.3333 38400 % 7
Pres20 Electrode capacitance measurement precision 8.3333 38400 % 8
Pres100 Electrode capacitance measurement precision 8.3333 38400 % 9
MaxSens Maximum sensitivity 0.003 12.5 fF/count 10
Res Resolution 16 bits
TCon20 Response time @ 20 pF 8 15 25 μs 11
ITSI_RUN Current added in run mode 55 μA
ITSI_LP Low power mode current adder 1.3 2.5 μA 12
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The
minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best
sensitivity but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based
on the following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5
pF
11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, DELVOL = 2, EXTCHRG = 15.
12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and
fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
Dimensions
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 67
To find a package drawing, go to http://www.freescale.com and perform a keyword
search for the drawing’s document number:
If you want the drawing for this package Then use this document number
144-pin LQFP 98ASS23177W
144-pin MAPBGA 98ASA00222D
8 Pinout
8.1 K60 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
L5 RESERVED RESERVED RESERVED
M5 NC NC NC
A10 NC NC NC
B10 NC NC NC
C10 NC NC NC
1 D3 PTE0 ADC1_SE4
a
ADC1_SE4
a
PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA
2 D2 PTE1 ADC1_SE5
a
ADC1_SE5
a
PTE1 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL
3 D1 PTE2 ADC1_SE6
a
ADC1_SE6
a
PTE2 SPI1_SCK UART1_CT
S_b
SDHC0_DC
LK
4 E4 PTE3 ADC1_SE7
a
ADC1_SE7
a
PTE3 SPI1_SIN UART1_RT
S_b
SDHC0_CM
D
5 E5 VDD VDD VDD
6 F6 VSS VSS VSS
7 E3 PTE4 DISABLED PTE4 SPI1_PCS0 UART3_TX SDHC0_D3
8 E2 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2
9 E1 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_CT
S_b
I2S0_MCLK I2S0_CLKIN
10 F4 PTE7 DISABLED PTE7 UART3_RT
S_b
I2S0_RXD
11 F3 PTE8 DISABLED PTE8 UART5_TX I2S0_RX_F
S
12 F2 PTE9 DISABLED PTE9 UART5_RX I2S0_RX_B
CLK
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
68 Freescale Semiconductor, Inc.
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
13 F1 PTE10 DISABLED PTE10 UART5_CT
S_b
I2S0_TXD
14 G4 PTE11 DISABLED PTE11 UART5_RT
S_b
I2S0_TX_F
S
15 G3 PTE12 DISABLED PTE12 I2S0_TX_B
CLK
16 E6 VDD VDD VDD
17 F7 VSS VSS VSS
18 H3 VSS VSS VSS
19 H1 USB0_DP USB0_DP USB0_DP
20 H2 USB0_DM USB0_DM USB0_DM
21 G1 VOUT33 VOUT33 VOUT33
22 G2 VREGIN VREGIN VREGIN
23 J1 ADC0_DP1 ADC0_DP1 ADC0_DP1
24 J2 ADC0_DM1 ADC0_DM1 ADC0_DM1
25 K1 ADC1_DP1 ADC1_DP1 ADC1_DP1
26 K2 ADC1_DM1 ADC1_DM1 ADC1_DM1
27 L1 PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
28 L2 PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
29 M1 PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
30 M2 PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
31 H5 VDDA VDDA VDDA
32 G5 VREFH VREFH VREFH
33 G6 VREFL VREFL VREFL
34 H6 VSSA VSSA VSSA
35 K3 ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
36 J3 ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
37 M3 VREF_OUT/
CMP1_IN5/
CMP0_IN5/
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 69
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
ADC1_SE1
8
ADC1_SE1
8
ADC1_SE1
8
38 L3 DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
39 L4 DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
40 M7 XTAL32 XTAL32 XTAL32
41 M6 EXTAL32 EXTAL32 EXTAL32
42 L6 VBAT VBAT VBAT
43 VDD VDD VDD
44 VSS VSS VSS
45 M4 PTE24 ADC0_SE1
7
ADC0_SE1
7
PTE24 CAN1_TX UART4_TX EWM_OUT
_b
46 K5 PTE25 ADC0_SE1
8
ADC0_SE1
8
PTE25 CAN1_RX UART4_RX EWM_IN
47 K4 PTE26 DISABLED PTE26 UART4_CT
S_b
ENET_1588
_CLKIN
RTC_CLKO
UT
USB_CLKIN
48 J4 PTE27 DISABLED PTE27 UART4_RT
S_b
49 H4 PTE28 DISABLED PTE28
50 J5 PTA0 JTAG_TCL
K/
SWD_CLK/
EZP_CLK
TSI0_CH1 PTA0 UART0_CT
S_b
FTM0_CH5 JTAG_TCL
K/
SWD_CLK
EZP_CLK
51 J6 PTA1 JTAG_TDI/
EZP_DI
TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI
52 K6 PTA2 JTAG_TDO/
TRACE_SW
O/EZP_DO
TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/
TRACE_SW
O
EZP_DO
53 K7 PTA3 JTAG_TMS/
SWD_DIO
TSI0_CH4 PTA3 UART0_RT
S_b
FTM0_CH0 JTAG_TMS/
SWD_DIO
54 L7 PTA4 NMI_b/
EZP_CS_b
TSI0_CH5 PTA4 FTM0_CH1 NMI_b EZP_CS_b
55 M8 PTA5 DISABLED PTA5 FTM0_CH2 RMII0_RXE
R/
MII0_RXER
CMP2_OUT I2S0_RX_B
CLK
JTAG_TRS
T
56 E7 VDD VDD VDD
57 G7 VSS VSS VSS
58 J7 PTA6 DISABLED PTA6 FTM0_CH3 TRACE_CL
KOUT
59 J8 PTA7 ADC0_SE1
0
ADC0_SE1
0
PTA7 FTM0_CH4 TRACE_D3
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
70 Freescale Semiconductor, Inc.
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
60 K8 PTA8 ADC0_SE1
1
ADC0_SE1
1
PTA8 FTM1_CH0 FTM1_QD_
PHA
TRACE_D2
61 L8 PTA9 DISABLED PTA9 FTM1_CH1 MII0_RXD3 FTM1_QD_
PHB
TRACE_D1
62 M9 PTA10 DISABLED PTA10 FTM2_CH0 MII0_RXD2 FTM2_QD_
PHA
TRACE_D0
63 L9 PTA11 DISABLED PTA11 FTM2_CH1 MII0_RXCL
K
FTM2_QD_
PHB
64 K9 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 RMII0_RXD
1/
MII0_RXD1
I2S0_TXD FTM1_QD_
PHA
65 J9 PTA13 CMP2_IN1 CMP2_IN1 PTA13 CAN0_RX FTM1_CH1 RMII0_RXD
0/
MII0_RXD0
I2S0_TX_F
S
FTM1_QD_
PHB
66 L10 PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX RMII0_CRS
_DV/
MII0_RXDV
I2S0_TX_B
CLK
67 L11 PTA15 DISABLED PTA15 SPI0_SCK UART0_RX RMII0_TXE
N/
MII0_TXEN
I2S0_RXD
68 K10 PTA16 DISABLED PTA16 SPI0_SOUT UART0_CT
S_b
RMII0_TXD
0/
MII0_TXD0
I2S0_RX_F
S
69 K11 PTA17 ADC1_SE1
7
ADC1_SE1
7
PTA17 SPI0_SIN UART0_RT
S_b
RMII0_TXD
1/
MII0_TXD1
I2S0_MCLK I2S0_CLKIN
70 E8 VDD VDD VDD
71 G8 VSS VSS VSS
72 M12 PTA18 EXTAL EXTAL PTA18 FTM0_FLT2 FTM_CLKIN
0
73 M11 PTA19 XTAL XTAL PTA19 FTM1_FLT0 FTM_CLKIN
1
LPT0_ALT1
74 L12 RESET_b RESET_b RESET_b
75 K12 PTA24 DISABLED PTA24 MII0_TXD2 FB_A29
76 J12 PTA25 DISABLED PTA25 MII0_TXCL
K
FB_A28
77 J11 PTA26 DISABLED PTA26 MII0_TXD3 FB_A27
78 J10 PTA27 DISABLED PTA27 MII0_CRS FB_A26
79 H12 PTA28 DISABLED PTA28 MII0_TXER FB_A25
80 H11 PTA29 DISABLED PTA29 MII0_COL FB_A24
81 H10 PTB0 /
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
PTB0 I2C0_SCL FTM1_CH0 RMII0_MDI
O/
MII0_MDIO
FTM1_QD_
PHA
82 H9 PTB1 /
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
PTB1 I2C0_SDA FTM1_CH1 RMII0_MDC
/MII0_MDC
FTM1_QD_
PHB
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 71
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
83 G12 PTB2 /
ADC0_SE1
2/TSI0_CH7
/
ADC0_SE1
2/TSI0_CH7
PTB2 I2C0_SCL UART0_RT
S_b
ENET0_158
8_TMR0
FTM0_FLT3
84 G11 PTB3 /
ADC0_SE1
3/TSI0_CH8
/
ADC0_SE1
3/TSI0_CH8
PTB3 I2C0_SDA UART0_CT
S_b
ENET0_158
8_TMR1
FTM0_FLT0
85 G10 PTB4 /
ADC1_SE1
0
/
ADC1_SE1
0
PTB4 ENET0_158
8_TMR2
FTM1_FLT0
86 G9 PTB5 /
ADC1_SE1
1
/
ADC1_SE1
1
PTB5 ENET0_158
8_TMR3
FTM2_FLT0
87 F12 PTB6 /
ADC1_SE1
2
/
ADC1_SE1
2
PTB6 FB_AD23
88 F11 PTB7 /
ADC1_SE1
3
/
ADC1_SE1
3
PTB7 FB_AD22
89 F10 PTB8 PTB8 UART3_RT
S_b
FB_AD21
90 F9 PTB9 PTB9 SPI1_PCS1 UART3_CT
S_b
FB_AD20
91 E12 PTB10 /
ADC1_SE1
4
/
ADC1_SE1
4
PTB10 SPI1_PCS0 UART3_RX FB_AD19 FTM0_FLT1
92 E11 PTB11 /
ADC1_SE1
5
/
ADC1_SE1
5
PTB11 SPI1_SCK UART3_TX FB_AD18 FTM0_FLT2
93 H7 VSS VSS VSS
94 F5 VDD VDD VDD
95 E10 PTB16 /TSI0_CH9 /TSI0_CH9 PTB16 SPI1_SOUT UART0_RX FB_AD17 EWM_IN
96 E9 PTB17 /TSI0_CH10 /TSI0_CH10 PTB17 SPI1_SIN UART0_TX FB_AD16 EWM_OUT
_b
97 D12 PTB18 /TSI0_CH11 /TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_B
CLK
FB_AD15 FTM2_QD_
PHA
98 D11 PTB19 /TSI0_CH12 /TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_F
S
FB_OE_b FTM2_QD_
PHB
99 D10 PTB20 PTB20 SPI2_PCS0 FB_AD31 CMP0_OUT
100 D9 PTB21 PTB21 SPI2_SCK FB_AD30 CMP1_OUT
101 C12 PTB22 PTB22 SPI2_SOUT FB_AD29 CMP2_OUT
102 C11 PTB23 PTB23 SPI2_SIN SPI0_PCS5 FB_AD28
103 B12 PTC0 /
ADC0_SE1
4/
TSI0_CH13
/
ADC0_SE1
4/
TSI0_CH13
PTC0 SPI0_PCS4 PDB0_EXT
RG
I2S0_TXD FB_AD14
104 B11 PTC1 /
ADC0_SE1
/
ADC0_SE1
PTC1 SPI0_PCS3 UART1_RT
S_b
FTM0_CH0 FB_AD13
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
72 Freescale Semiconductor, Inc.
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
5/
TSI0_CH14
5/
TSI0_CH14
105 A12 PTC2 /
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
/
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
PTC2 SPI0_PCS2 UART1_CT
S_b
FTM0_CH1 FB_AD12
106 A11 PTC3 /CMP1_IN1 /CMP1_IN1 PTC3 SPI0_PCS1 UART1_RX FTM0_CH2 FB_CLKOU
T
107 H8 VSS VSS VSS
108 VDD VDD VDD
109 A9 PTC4 PTC4 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11 CMP1_OUT
110 D8 PTC5 PTC5 SPI0_SCK LPT0_ALT2 FB_AD10 CMP0_OUT
111 C8 PTC6 /CMP0_IN0 /CMP0_IN0 PTC6 SPI0_SOUT PDB0_EXT
RG
FB_AD9
112 B8 PTC7 /CMP0_IN1 /CMP0_IN1 PTC7 SPI0_SIN FB_AD8
113 A8 PTC8 /
ADC1_SE4
b/
CMP0_IN2
/
ADC1_SE4
b/
CMP0_IN2
PTC8 I2S0_MCLK I2S0_CLKIN FB_AD7
114 D7 PTC9 /
ADC1_SE5
b/
CMP0_IN3
/
ADC1_SE5
b/
CMP0_IN3
PTC9 I2S0_RX_B
CLK
FB_AD6 FTM2_FLT0
115 C7 PTC10 /
ADC1_SE6
b/
CMP0_IN4
/
ADC1_SE6
b/
CMP0_IN4
PTC10 I2C1_SCL I2S0_RX_F
S
FB_AD5
116 B7 PTC11 /
ADC1_SE7
b
/
ADC1_SE7
b
PTC11 I2C1_SDA I2S0_RXD FB_RW_b
117 A7 PTC12 PTC12 UART4_RT
S_b
FB_AD27
118 D6 PTC13 PTC13 UART4_CT
S_b
FB_AD26
119 C6 PTC14 PTC14 UART4_RX FB_AD25
120 B6 PTC15 PTC15 UART4_TX FB_AD24
121 VSS VSS VSS
122 VDD VDD VDD
123 A6 PTC16 PTC16 CAN1_RX UART3_RX ENET0_158
8_TMR0
FB_CS5_b/
FB_TSIZ1/
FB_BE23_1
6_BLS15_8
_b
124 D5 PTC17 PTC17 CAN1_TX UART3_TX ENET0_158
8_TMR1
FB_CS4_b/
FB_TSIZ0/
FB_BE31_2
4_BLS7_0_
b
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 73
144
LQF
P
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
125 C5 PTC18 PTC18 UART3_RT
S_b
ENET0_158
8_TMR2
FB_TBST_b
/FB_CS2_b/
FB_BE15_8
_BLS23_16
_b
126 B5 PTC19 PTC19 UART3_CT
S_b
ENET0_158
8_TMR3
FB_CS3_b/
FB_BE7_0_
BLS31_24_
b
FB_TA_b
127 A5 PTD0 PTD0 SPI0_PCS0 UART2_RT
S_b
FB_ALE/
FB_CS1_b/
FB_TS_b
128 D4 PTD1 /
ADC0_SE5
b
/
ADC0_SE5
b
PTD1 SPI0_SCK UART2_CT
S_b
FB_CS0_b
129 C4 PTD2 PTD2 SPI0_SOUT UART2_RX FB_AD4
130 B4 PTD3 PTD3 SPI0_SIN UART2_TX FB_AD3
131 A4 PTD4 PTD4 SPI0_PCS1 UART0_RT
S_b
FTM0_CH4 FB_AD2 EWM_IN
132 A3 PTD5 /
ADC0_SE6
b
/
ADC0_SE6
b
PTD5 SPI0_PCS2 UART0_CT
S_b
FTM0_CH5 FB_AD1 EWM_OUT
_b
133 A2 PTD6 /
ADC0_SE7
b
/
ADC0_SE7
b
PTD6 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0
134 M10 VSS VSS VSS
135 F8 VDD VDD VDD
136 A1 PTD7 PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1
137 C9 PTD8 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16
138 B9 PTD9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17
139 B3 PTD10 DISABLED PTD10 UART5_RT
S_b
FB_A18
140 B2 PTD11 DISABLED PTD11 SPI2_PCS0 UART5_CT
S_b
SDHC0_CL
KIN
FB_A19
141 B1 PTD12 DISABLED PTD12 SPI2_SCK SDHC0_D4 FB_A20
142 C3 PTD13 DISABLED PTD13 SPI2_SOUT SDHC0_D5 FB_A21
143 C2 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22
144 C1 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23
8.2 K60 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
74 Freescale Semiconductor, Inc.
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
75
74
73
60
59
58
57
56
55
54
53
52
51
72
71
70
69
68
67
66
65
64
63
62
61
25
24
23
22
21
40
39
38
37
50
49
48
47
46
45
44
43
42
41
36
35
34
33
32
31
30
29
28
27
26
99
79
78
77
76
98
97
96
95
94
93
92
91
90
89
88
80
81
82
83
84
85
86
87
100
108 VDD
107
106
105
104
103
102
101
VSS
PTC3
PTC2
PTC1
PTC0
PTB23
PTB22
116 PTC11
115
114
113
112
111
110
109
PTC10
PTC9
PTC8
PTC7
PTC6
PTC5
PTC4
124 PTC17
123
122
121
120
119
118
117
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
132 PTD5
131
130
129
128
127
126
125
PTD4
PTD3
PTD2
PTD1
PTD0
PTC19
PTC18
140 PTD11
139
138
137
136
135
134
133
PTD10
PTD9
PTD8
PTD7
VDD
VSS
PTD6
144
143
142
141
PTD15
PTD14
PTD13
PTD12
PTB20
PTA28
PTA27
PTA26
PTA25
PTB19
PTB18
PTB17
PTB16
VDD
VSS
PTB11
PTB10
PTB9
PTB8
PTB7
PTA29
PTB0
PTB1
PTB2
PTB3
PTB4
PTB5
PTB6
PTB21
PTA24
RESET_b
PTA19
PTA18
VSS
VDD
PTA17
PTA16
PTA15
PTA14
PTA13
PTA12
PTA11
PTA10
PTA9
PTA8
PTA7
PTA6
VSS
VDD
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTE28
PTE27
PTE26
PTE25
PTE24
VSS
VDD
VBAT
EXTAL32
XTAL32
DAC1_OUT/CMP2_IN3/ADC1_SE23
DAC0_OUT/CMP1_IN3/ADC0_SE23
VREF_OUT/CMP1_IN5/
CMP0_IN5/ADC1_SE18
USB0_DM
USB0_DP
VSS
VSS
VDD
PTE12
PTE11
PTE10
PTE9
PTE8
PTE7
PTE6
PTE5
PTE4
VSS
VDD
PTE3
PTE2
PTE1
PTE0
ADC1_DP1
ADC0_DM1
ADC0_DP1
VREGIN
VOUT33
ADC0_SE16/CMP1_IN2/ADC0_SE21
ADC1_SE16/CMP2_IN2/ADC0_SE22
VSSA
VREFL
VREFH
VDDA
PGA1_DM/ADC1_DM0/ADC0_DM3
PGA1_DP/ADC1_DP0/ADC0_DP3
PGA0_DM/ADC0_DM0/ADC1_DM3
PGA0_DP/ADC0_DP0/ADC1_DP3
ADC1_DM1
Figure 29. K60 144 LQFP Pinout Diagram
Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 75
1 2 3456789
12 3 456789
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
10
K
K
10
11
11
LL
12
12
MM PTA18
PTC8 PTC4 NC PTC3 PTC2
PTA1 PTA6PTA0PTE27
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PTE26 PTE25 PTA2 PTA3 PTA8
PTA7
VSSVSSVSSAVDDAPTE28VSSUSB0_DM
ADC0_DM1
ADC1_DM1
PGA0_DM/
ADC0_DM0/
ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC1_OUT/
CMP2_IN3/
ADC1_SE23
RESERVED VBAT PTA4 PTA9 PTA11
PTA12
PTA13
PTB1
PTA27
PTB0
PTB4PTB5VSSVSSVREFLVREFHPTE11PTE12VREGINVOUT33
USB0_DP
ADC0_DP1
ADC1_DP1
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24 NC EXTAL32 XTAL32 PTA5 PTA10 VSS
PTA16
PTA14
PTB3
PTA29
PTA26
PTA17
PTA15
PTA19
RESET_b
PTA24
PTA25
PTA28
PTB2
PTB6PTB7PTB8PTB9VDD
VDD PTB17 PTB16 PTB10PTB11
PTB19 PTB18
PTB22PTB23NC
PTB20PTB21PTC5
PTD8PTC6
PTC7 PTD9 NC PTC1 PTC0
VSS VSS
VDDVDD
PTC13 PTC9
PTC11
PTC10
PTC19 PTC15
PTC14PTC18PTD2
PTD3PTD10
PTD13
PTE0 PTD1 PTC17
VDD
VDDPTE7
PTE3PTE4
PTE8PTE9PTE10
PTE6 PTE5
PTE1PTE2
PTD15 PTD14
PTD11PTD12
PTC12PTC16PTD0PTD4PTD5PTD6PTD7
Figure 30. K60 144 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 50. Revision History
Rev. No. Date Substantial Changes
1 11/2010 Initial public revision
Table continues on the next page...
Revision History
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
76 Freescale Semiconductor, Inc.
Table 50. Revision History (continued)
Rev. No. Date Substantial Changes
2 3/2011 Many updates throughout
3 3/2011 Added sections that were inadvertently removed in previous revision
4 3/2011 Reworded IIC footnote in "Voltage and Current Operating Requirements" table.
Added paragraph to "Peripheral operating requirements and behaviors" section.
Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5 6/2011 Changed supported part numbers per new part number scheme
Changed DC injection current specs in "Voltage and current operating requirements"
table
Changed Input leakage current and internal pullup/pulldown resistor specs in "Voltage
and current operating behaviors" table
Split Low power stop mode current specs by temperature range in "Power
consumption operating behaviors" table
Changed typical IDD_VBAT spec in "Power consumption operating behaviors" table
Added ENET and LPTMR clock specs to "Device clock specifications" table
Changed Minimum external reset pulse width in "General switching specifications"
table
Changed PLL operating current in "MCG specifications" table
Added footnote to PLL period jitter in "MCG specifications" table
Changed Supply current in "Oscillator DC electrical specifications" table
Changed Crystal startup time in "Oscillator frequency specifications" table
Changed Operating voltage in "EzPort switching specifications" table
Changed title of "FlexBus switching specifications" table and added Output valid and
hold specs
Added "FlexBus full range switching specifications" table
Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table
Changed Gain spec in "16-bit ADC with PGA characteristics" table
Added typical Input DC current to "16-bit ADC with PGA characteristics" table
Changed Input offset voltage and ENOB notes field in "16-bit ADC with PGA
characteristics" table
Changed Analog comparator initialization delay in "Comparator and 6-bit DAC
electrical specifications"
Changed Code-to-code settling time, DAC output voltage range low, and Temperature
coefficient offset voltage in "12-bit DAC operating behaviors" table
Changed Temperature drift and Load regulation in "VREF full-range operating
behaviors" table
Changed Regulator output voltage in "USB VREG electrical specifications" table
Changed ILIM description and specs in "USB VREG electrical specifications" table
Changed DSPI_SCK cycle time specs in "DSPI timing" tables
Changed DSPI_SS specs in "Slave mode DSPI timing (low-speed mode)" table
Changed DSPI_SCK to DSPI_SOUT valid spec in "Slave mode DSPI timing (high-
speed mode)" table
Changed Reference oscillator current source base current spec and added Low-
power current adder footer in "TSI electrical specifications" table
Table continues on the next page...
Revision History
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc. 77
Table 50. Revision History (continued)
Rev. No. Date Substantial Changes
6 9/2011 Added AC electrical specifications.
Replaced TBDs with silicon data throughout.
In "Power mode transition operating behaviors" table, removed entry times.
Updated "EMC radiated emissions operating behaviors" to remove SAE level and also
added data for 144LQFP.
Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram".
Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes"
figures.
Updated IDD_RUN numbers in 'Power consumption operating behaviors' section.
Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run
mode supply current vs. core frequency — all peripheral clocks disabled' figure.
In 'Voltage reference electrical specifications' section, updated CL, Vtdrift, and Vvdrift
values.
In 'USB electrical specifications' section, updated VDP_SRC, IDDstby, and 'VReg33out
values.
Revision History
K60 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
78 Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Document Number: K60P144M100SF2
Rev. 6, 9/2011
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2010–2011 Freescale Semiconductor, Inc.