INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
8/18/04
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
Benefits
www.irf.com 1
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 31
IC @ TC = 100°C Continuous Collector Current 15
ICM Pulsed Collector Current 62
ILM Clamped Inductive Load Current 62 A
IF @ TC = 25°C Diode Continuous Forward Current 31
IF @ TC = 100°C Diode Continuous Forward Current 15
IFM Diode Maximum Forward Current 64
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation 208
PD @ TC = 100°C Maximum Power Dissipation 83
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
W
IRGB15B60KD
IRGS15B60KD
IRGSL15B60KD
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– ––– 0.6
RθJC Junction-to-Case - Diode ––– ––– 2.1
RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– °C/W
RθJA Junction-to-Ambient, typical socket mount––– ––– 62
RθJA Junction-to-Ambient (PCB Mount, steady state)––– ––– 40
Wt Weight ––– 1.44 ––– g
E
G
n-channel
C
VCES = 600V
IC = 15A, TC=100°C
tsc > 10µs, TJ=150°C
VCE(on) typ. = 1.8V
D2Pak
IRGS15B60KD
TO-220AB
IRGB15B60KD TO-262
IRGSL15B60KD
PD - 94383D
IRG/B/S/SL15B60KD
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 60 0 –– V VGE = 0V, IC = 500µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.3 V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
VCE(on) Collector-to-Emitter Saturation Voltage 1.5 1.80 2.20 IC = 15A, VGE = 15V
––– 2.05 2.50 V IC = 15A, VGE = 15V TJ = 125°C
––– 2.10 2.60 IC = 15A, VGE = 15V TJ = 150°C
VGE(th) Gate Threshold Voltage 3.5 4.5 5. 5 V VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage –– -10 ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
gfe Forward Transconductance ––– 10.6 ––– S VCE = 50V, IC = 20A, PW=80µs
ICES Zero Gate Voltage Collector Current ––– 5.0 150 µA VGE = 0V, VCE = 600V
––– 500 1000 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop ––– 1.20 1.45 IC = 15A
––– 1.20 1.45 V IC = 15A TJ = 150°C
IGES Gate-to-Emitter Leakage Current ––– –– ±100 nA VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Ref.Fig.
5, 6,7
9, 10,11
12
9, 10,11
Parameter Min. Typ. Max. Units Conditions
Qg Total Gate Charge (turn-on) –– 56 84 IC = 15A
Qge Gate - Emitter Charge (turn-on) –– 7.0 10 nC VCC = 400V
Qgc Gate - Collector Charge (turn-on) ––– 26 39 VGE = 15V
Eon Turn-On Switching Loss ––– 220 3 3 0 µJ IC = 15A, VCC = 400V
Eoff Turn-Off Switching Loss ––– 340 455 VGE = 15V,RG = 22Ω, L = 200µH
Etot Total Switching Loss ––– 56 0 7 8 5 Ls = 150nH TJ = 25°C
td(on) Turn-On Delay Time ––– 34 44 IC = 15A, VCC = 400V
trRise Time ––– 16 22 VGE = 15V, RG = 22Ω, L = 200µH
td(off) Turn-Off Delay Time –– 184 20 0 ns Ls = 150nH, TJ = 25°C
tfFall Time ––– 20 26
Eon Turn-On Switching Loss 355 47 0 IC = 15A, VCC = 400V
Eoff Turn-Off Switching Loss ––– 490 600 µJ VGE = 15V,RG = 22Ω, L = 200µH
Etot Total Switching Loss ––– 83 5 1070 Ls = 150nH TJ = 150°C
td(on) Turn-On Delay Time ––– 34 44 IC = 15A, VCC = 400V
trRise Time ––– 18 25 VGE = 15V, RG = 22Ω, L = 200µH
td(off) Turn-Off Delay Time –– 203 22 6 ns Ls = 150nH, TJ = 150°C
tfFall Time ––– 28 36
Cies Input Capacitance ––– 850 ––– VGE = 0V
Coes Output Capacitance ––– 75 ––– pF VCC = 30V
Cres Reverse Transfer Capacitance ––– 35 –– f = 1.0MHz
TJ = 150°C, IC = 62A, Vp =600V
VCC = 500V, VGE = +15V to 0V,
µs TJ = 150°C, Vp =600V,RG = 22
VCC = 360V, VGE = +15V to 0V
Erec Reverse Recovery energy of the diode ––– 54 0 720 µJ TJ = 150°C
trr Diode Reverse Recovery time ––– 92 111 ns VCC = 400V, IF = 15A, L = 200µH
Irr Diode Peak Reverse Recovery Current ––– 29 33 A V GE = 15V,RG = 22Ω, Ls = 150nH
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
RBSOA Reverse Bias Safe Operting Area FULL SQUARE
SCSOA Short Circuit Safe Operting Area 10 ––– ––
Ref.Fig.
CT1
CT4
CT4
13,15
WF1WF2
4
CT2
CT3
WF4
17,18,19
20,21
CT4,WF3
CT4
RG = 22
14, 16
CT4
WF1
WF2
Note to are on page 15
8
IRG/B/S/SL15B60KD
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C; TJ 150°C Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
0 20 40 60 80 100 120 140 160
TC C)
0
5
10
15
20
25
30
35
IC (A)
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
IC (A)
10 µs
100 µs
1ms
DC
10 100 1000
VCE (V)
0
1
10
100
IC A)
0 20 40 60 80 100 120 140 160
TC (°C)
0
40
80
120
160
200
240
Ptot (W)
8
IRG/B/S/SL15B60KD
4www.irf.com
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 300µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 300µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 300µs
0123456
VCE (V)
0
10
20
30
40
50
60
70
80
90
100
ICE (A)
VGE = 18V
V GE = 15V
V GE = 12V
V GE = 10V
V GE = 8.0V
0123456
VCE (V)
0
10
20
30
40
50
60
70
80
90
100
ICE (A)
VGE = 18V
V GE = 15V
V GE = 12V
V GE = 10V
V GE = 8.0V
0.0 0.5 1.0 1.5 2.0 2.5 3.0
VF (V)
0
10
20
30
40
50
60
IF (A)
-40°C
25°C
150°C
0123456
VCE (V)
0
10
20
30
40
50
60
70
80
90
100
ICE (A)
VGE = 18V
V GE = 15V
V GE = 12V
V GE = 10V
V GE = 8.0V
IRG/B/S/SL15B60KD
www.irf.com 5
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
4 6 8 101214161820
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 5.0A
ICE = 15A
ICE = 30A
4 6 8 101214161820
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 5.0A
ICE = 15A
ICE = 30A
0 5 10 15 20
VGE (V)
0
20
40
60
80
100
120
140
160
ICE (A)
TJ = 25°C
TJ = 150°C
TJ = 150°C
TJ = 25°C
4 6 8 101214161820
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 5.0A
ICE = 15A
ICE = 30A
IRG/B/S/SL15B60KD
6www.irf.com
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 600V
ICE= 15A; VGE= 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 15A; VGE= 15V
0 1020304050
IC (A)
0
200
400
600
800
1000
1200
1400
1600
1800
Energy (µJ)
EOFF
EON
010 20 30 40 50
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
050 100 150
RG ()
0
100
200
300
400
500
600
700
800
900
Energy (µJ)
EON
EOFF
050 100 150
RG ()
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
IRG/B/S/SL15B60KD
www.irf.com 7
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 15A
Fig. 20 - Typical Diode Q RR
VCC= 400V; VGE= 15V;TJ = 150°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 15A; TJ = 150°C
010 20 30 40 50
IF (A)
5
10
15
20
25
30
35
IRR (A)
RG = 10
RG =47
RG =68
RG =100
RG =22
020 40 60 80 100 120
RG (Ω)
0
5
10
15
20
25
30
35
40
IRR (A)
0500 1000 1500
diF /dt (A/µs)
0
5
10
15
20
25
30
35
IRR (A)
0 500 1000 1500
diF /dt (A/µs)
0
500
1000
1500
2000
2500
3000
QRR (µC)
22
47
100
10
30A
10A
15A
40A
68
IRG/B/S/SL15B60KD
8www.irf.com
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 15A; L = 600µH
Fig. 22- Typ. Capacitance vs. V CE
VGE= 0V; f = 1MHz
010 20 30 40
IF (A)
0
100
200
300
400
500
600
700
800
900
1000
Energy (µJ)
22
10
47
100
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 204060
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE (V)
300V
400V
IRG/B/S/SL15B60KD
www.irf.com 9
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0
t1 , Rectangular Puls e Durati on (sec )
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak T j = P dm x Zthjc + Tc
1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0
t1 , Rectangular Puls e Durati on (sec )
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
S INGLE P ULSE
( THERMAL RESP ONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak T j = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.231 0.000157
0.175 0.000849
0.201 0.011943
τJ
τJ
τ1
τ1τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τ
C
Ci= i/Ri
Ci= τi/Ri
Ri (°C/W) τi (sec)
1.164 0.000939
0.9645 0.035846
τJ
τJ
τ1
τ1τ2
τ2
R1
R1R2
R2
τ
τ
C
Ci= i/Ri
Ci= τi/Ri
IRG/B/S/SL15B60KD
10 www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
1K
VCC
DUT
0
L
Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
L
Rg
80 V DUT
480V
+
-
DC
Driver
DUT
360V
IRG/B/S/SL15B60KD
www.irf.com 11
WF.3- Typ. Reverse Recovery
@ TJ = 150°C using CT.4 WF.4- Typ. Short Circuit
@ TJ = 150°C using CT.3
WF.1- Typ. Turn-off Loss
@ TJ = 150°C using CT.4 WF.2- Typ. Turn-on Loss
@ TJ = 150°C using Fig. CT.4
-100
0
100
200
300
400
500
600
-0.5 0.0 0.5 1.0 1.5
t (µS )
V
CE
(V)
-5
0
5
10
15
20
25
30
I
CE
(A)
Eoff Loss
5% V CE
5% ICE
90% ICE
t
F
-100
0
100
200
300
400
500
-0.2 -0.1 0.0 0.1
t (µS )
V
CE
(V)
-10
0
10
20
30
40
50
I
CE
(A)
t
R
Eo n Loss
10% test current
tes t current
5% V
CE
90% test current
-500
-400
-300
-200
-100
0
100
-0.06 0.04 0.14
t (µS)
V
CE
(V)
-40
-30
-20
-10
0
10
20
I
CE
(A)
Peak
IRR
t
RR
Q
RR
10%
Peak
IRR
-100
0
100
200
300
400
500
-10 0 10 20 30
t (µS )
V
CE
(V)
-50
0
50
100
150
200
250
I
CE
(A)
VCE
I
IRG/B/S/SL15B60KD
12 www.irf.com
LEAD ASSIG NMEN TS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.0 22)
0.46 (.0 18)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.0 55)
1.15 (.0 45)
2.54 (.10 0)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1 982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
HEXFET
1- GAT E
2- DRAIN
3- SOURCE
4- DRAIN
LEAD ASSI GN M ENT S
IGBTs, CoPAC
K
1- GAT E
2- COL LECTOR
3- EMITTER
4- COL LECTOR
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE:
IN THE ASSEMBLY LINE "C"
THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 1997 PART NUMBE
R
AS S EMB LY
LOT CODE
DATE CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
RECTIFIER
INTERNATIONAL
Note: "P" in assembly line
position indicates "Lead- Free"
IRG/B/S/SL15B60KD
www.irf.com 13
D2Pak Part Marking Information
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
Note: "P" in assembly line
pos ition indicates "Lead-Free"
F530S
THIS IS AN IRF530S WITH
LOT CODE 8024
ASSEMBLED ON WW 02, 2000
IN THE ASSEMBLY LINE "L"
AS S E MB LY
LOT CODE
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBE R
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
F530S
A = AS S EMBLY S ITE COD E
WEE K 02
P = DESIGNATES LEAD- FREE
PRODUCT (OPTIONAL)
RECTIFIER
INTERNATIONAL
LOGO
LOT CODE
ASSEMBLY YEAR 0 = 2000
DATE CODE
PAR T NUMBE R
IRG/B/S/SL15B60KD
14 www.irf.com
TO-262 Part Marking Information
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
AS S E MB L Y
LOT CODE
RECTIFIER
INTERNATIONAL
ASSEMBLED ON WW 19, 1997
Note: "P" in assembl y line
p o s it ion in dicat es " L ead-Free"
IN THE ASSE MB LY LINE "C" LOGO
TH IS IS AN IRL3103L
LOT CODE 1789
EXAMPLE:
LINE C
DATE CODE
WEEK 19
YEAR 7 = 1997
PART NUMBER
PART NUMBE R
LOGO
LOT CODE
ASSEMBLY
INTERNATIONAL
RECTIFIER
PRODUCT (OPTION AL)
P = DES IGNAT E S L EAD-FR EE
A = AS S E MB L Y S IT E CO DE
WEEK 19
YEAR 7 = 1997
DATE CODE
OR
IRG/B/S/SL15B60KD
www.irf.com 15
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
Notes:
This is only applied to TO-220AB package
This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery.
VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω.
TO-220 package is not recommended for Surface Mount Application
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
F
EED DIRECTION
10.90 (.429)
10.70 (.421) 16. 10 ( . 6 34)
15. 90 ( .626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4. 72 ( .136)
4. 52 ( .178)
24. 30 ( .957
)
23. 90 ( .941
)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (. 532)
12.80 (. 504)
330.00
(14.173)
MAX.
27.40 ( 1.079)
23.90 ( .941)
60.00 ( 2.362
)
MIN.
30.40 (1. 197)
MAX.
26.40 (1.039)
24.40 (.961)
NOT ES :
1. COMFORMS TO EI A-418.
2. CONTROLLING DIMENSION: MILLIMET ER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/