IRFP2907Z
HEXFET® Power MOSFET
VDSS = 75V
RDS(on) = 4.5m
ID = 90A
06/17/04
www.irf.com 1
AUTOMOTIVE MOSFET
HEXFET® is a registered trademark of International Rectifier.
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features com-
bine to make this design an extremely efficient
and reliable device for use in Automotive applica-
tions and a wide variety of other applications.
S
D
G
Features
lAdvanced Process Technology
lUltra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
PD - 95873
TO-247AC
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 10C Continuous Drain Current, VGS @ 10V (See Fig. 9)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS Single Pulse Avalanche Energy (Thermally Limited)
d
mJ
EAS (tested) Single Pulse Avalanche Energy Tested Value
i
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
h
mJ
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.49 °C/W
RθCS Case-to-Sink, Flat, Greased Surface
j
0.24 ––
RθJA Junction-to-Ambient
j
––– 40
Max.
170
120
680
90
10 lbf•in (1.1N•m)
310
2.0
± 20
520
690
See Fig.12a,12b,15,16
300 (1.6mm from case )
-55 to + 175
http://store.iiic.cc/
IRFP2907Z
2www.irf.com
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C,
L=0.13mH, RG = 25, IAS = 90A, VGS =10V.
Part not recommended for use above this value.
ISD 90A, di/dt 340A/µs, VDD V(BR)DSS,
TJ 175°C.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80% VDSS.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
Rθ is measured at TJ of approximately 90°C.
S
D
G
S
D
G
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
V(BR)DSS Drain-to-Source Breakdown Volta
g
e75V
∆ΒVDSS
/
TJ Breakdown Volta
g
e Temp. Coefficient ––– 0.069 ––– VC
RDS(on) Static Drain-to-Source On-Resistance –– 3.5 4.5 m
VGS(th) Gate Threshold Volta
g
e2.04.0V
g
fs Forward Transconductance 180 ––– –– S
IDSS Drain-to-Source Leaka
g
e Current ––– ––– 20
µ
A
––– –– 250
IGSS Gate-to-Source Forward Leaka
e ––– –– 200 nA
Gate-to-Source Reverse Leaka
g
e ––– ––– -200
QgTotal Gate Char
g
e ––– 180 270
Qgs Gate-to-Source Char
g
e ––– 46 –– nC
Qgd Gate-to-Drain ("Miller") Char
g
e –– 65 ––
td(on) Turn-On Dela
y
Time –19––ns
trRise Time ––– 140 –––
td(off) Turn-Off Dela
y
Time –97–
tfFall Time ––– 100 –––
LDInternal Drain Inductance ––– 5.0 ––– nH Between lead,
6mm (0.25in.)
LSInternal Source Inductance ––– 13 –– from packa
g
e
and center of die contact
Ciss Input Capacitance ––– 7500 –– pF
Coss Output Capacitance ––– 970 –––
Crss Reverse Transfer Capacitance ––– 510 –––
Coss Output Capacitance ––– 3640 –––
Coss Output Capacitance ––– 650 –––
Coss eff. Effective Output Capacitance –– 1020 ––
Diode Characteristics
Parameter Min. T
y
p. Max. Units
ISContinuous Source Current ––– ––– 90
(Body Diode) A
ISM Pulsed Source Current ––– ––– 680
(
Bod
y
Diode
)
c
VSD Diode Forward Voltage ––– –– 1.3 V
trr Reverse Recovery Time 4161ns
Qrr Reverse Recover
y
Char
g
e –– 59 89 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
RG = 2.5
ID = 90A
VDS = 25V, ID = 90A
VDD = 38V
ID = 90A
VGS = 20V
VGS = -20V
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 10V
f
MOSFET symbol
VGS = 0V
VDS = 25V
VGS = 0V, VDS = 60V, ƒ = 1.0MHz
Conditions
VGS = 0V, VDS = 0V to 60V
ƒ = 1.0MHz, See Fig. 5
TJ = 25°C, IF = 90A, VDD = 38V
di/dt = 100A/
µ
s
f
TJ = 25°C, IS = 90A, VGS = 0V
f
showing the
integral reverse
p-n junction diode.
VDS = 60V
VGS = 10V
f
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 90A
f
VDS = VGS, ID = 250µA
VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
http://store.iiic.cc/
IRFP2907Z
www.irf.com 3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
0 25 50 75 100 125 150
ID,Drain-to-Source Current (A)
0
50
100
150
200
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
http://store.iiic.cc/
IRFP2907Z
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 50 100 150 200
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 60V
VDS= 38V
VDS= 15V
ID= 90A
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
http://store.iiic.cc/
IRFP2907Z
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
25
50
75
100
125
150
175
ID, Drain Current (A)
Limited By Package
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 90A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.1224 0.000360
0.1238 0.001463
0.2433 0.021388
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
http://store.iiic.cc/
IRFP2907Z
6www.irf.com
QG
QGS QGD
VG
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
1K
VCC
DUT
0
L
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
500
1000
1500
2000
2500
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 16A
25A
BOTTOM 90A
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
http://store.iiic.cc/
IRFP2907Z
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 90A
http://store.iiic.cc/
IRFP2907Z
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* V
GS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
http://store.iiic.cc/
IRFP2907Z
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/04
TO-247AC package is not recommended for Surface Mount Application.
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
/27&2'(
:::((.
<<<($5
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGEHIRUHRUIRU
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'($4
$66(0%/<
/2*2
5(&7,),(5
,17(51$7,21$/
$4
,5)3(
3$57180%(5
<<::
'$7(&2'(

SDUWVPDQXIDFWXUHGLQ*%
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGDIWHU
(;$03/(
$66(0%/('21::
/27&2'(
:,7+$66(0%/<
7+,6,6$1,5)3(
,17+($66(0%/</,1(+
+
/2*2
,17(51$7,21$/
5(&7,),(5
,5)3(
/27&2'(
$66(0%/<

3$57180%(5
'$7(&2'(
< ($5
:((.
/,1(+
Note: "P" in assembly line
position indicates "Lead-Free"
http://store.iiic.cc/
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
http://store.iiic.cc/