2014-2016 Microchip Technology Inc. DS00001783C-page 1
Product Features
USB-IF Hi-Speed certified to the Universal Serial
Bus Specification Rev 2.0
Interface compliant with the ULPI Specification
revision 1.1 in 8-bit mode
Industry standard UTMI+ Low Pin Interface (ULPI)
Converts 54 UTMI+ signals into a standard 12 pin
Link controller interface
54.7mA Unconfigured Current (typical) - ideal for
bus powered applications
83uA suspend current (typical) - ideal for battery
powered applications
Latch-Up performance exceeds 150 mA per EIA/
JESD 78, Class II
ESD protection levels of 8kV HBM without exter-
nal protection devices
Integrated protection to withstand IEC61000-4-2
ESD tests (8kV contact and 15kV air) per 3rd
party test facility
Supports FS pre-amble for FS hubs with a LS
device attached (UTMI+ Level 3)
Supports HS SOF and LS keep-alive pulse
Includes full support for the optional On-The-Go
(OTG) protocol detailed in the On-The-Go Sup-
plement Revision 1.0a specification
Supports the OTG Host Negotiation Protocol
(HNP) and Session Request Protocol (SRP)
Allows host to turn VBUS off to conserve battery
power in OTG applications
Supports OTG monitoring of VBUS levels with
internal comparators. Includes support for an
external VBUS or fault monitor.
Low Latency Hi-Speed Receiver (43 Hi-Speed
clocks Max) allows use of legacy UTMI Links with
a ULPI wrapper
Integrated Pull-up resistor on STP for interface
protection allows a reliable Link/PHY start-up with
slow Links (software configured for low power)
Internal 1.8 volt regulators allow operation from a
single 3.3 volt supply
Internal short circuit protection of ID, DP and DM
lines to VBUS or ground
Integrated 24MHz Crystal Oscillator supports
either crystal operation or 24MHz external clock
input
Internal PLL for 480MHz Hi-Speed USB operation
Industrial Operating Temperature -40C to +85C
32 pin, QFN RoHS Compliant package
(5 x 5 x 0.90 mm height)
Applications
The USB3300 is the ideal companion to any ASIC, SoC
or FPGA solution designed with a ULPI Hi-Speed USB
host, peripheral or OTG core.
The USB3300 is well suited for:
Cell Phones
•PDAs
MP3 Players
Scanners
External Hard Drives
Digital Still and Video Cameras
Portable Media Players
Printers
USB3300
Hi-Speed USB Host, Device or OTG PHY with
ULPI Low Pin Interface
USB3300
DS00001783C-page 2 2014-2016 Microchip Technology Inc.
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the
revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Web site; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are
using.
Customer Notific at ion Syst em
Register on our web site at www.microchip.com to receive the most current information on all of our products.
2014-2015 Microchip Technology Inc. DS00001783C-page 3
USB3300
Table of Contents
1.0 Introduction ..................................................................................................................................................................................... 4
2.0 Functional Overview ....................................................................................................................................................................... 6
3.0 Pin Layout ....................................................................................................................................................................................... 7
4.0 Operational Description ................................................................................................................................................................ 11
5.0 Electrical Characteristics ............................................................................................................................................................... 12
6.0 Architecture Overview ................................................................................................................................................................... 16
7.0 Application Notes .......................................................................................................................................................................... 39
8.0 Package Outline ............................................................................................................................................................................ 45
Appendix A: Data Sheet Revision History ........................................................................................................................................... 48
The Microchip Web Site ...................................................................................................................................................................... 50
Customer Change Notification Service ............................................................................................................................................... 50
Customer Support ............................................................................................................................................................................... 50
Product Identification System ............................................................................................................................................................. 51
USB3300
DS00001783C-page 4 2014-2015 Microchip Technology Inc.
1.0 INTRODUCTION
1.1 General Description
The USB3300 is an industrial temperature Hi-Speed USB Physical Layer Transceiver (PHY). The USB3300 uses a low
pin count interface (ULPI) to connect to a ULPI compliant Link layer. The ULPI interface reduces the UTMI+ interface
from 54 pins to 12 pins using a method of in-band signaling and status byte transfers between the Link and PHY.
This PHY was designed from the start with the ULPI interface. No UTMI to ULPI wrappers are used in this design which
provides a seamless ULPI to Link interface. The result is a PHY with a low latency transmit and receive time. Microchip’s
low latency high speed and full speed receiver provide the option of re-using existing UTMI Links with a simple wrapper
to convert UTMI to ULPI.
The ULPI interface allows the USB3300 PHY to operate as a device, host, or an On-The-Go (OTG) device. Designs
using the USB3300 PHY as a device, can add host and OTG capability at a later date with no additional pins.
The ULPI interface, combined with Microchip’s proprietary technology, makes the USB3300 the ideal method of adding
Hi-Speed USB to new designs. The USB3300 features an industry leading small footprint package (5mm by 5mm) with
sub 1mm height. In addition the USB3300 integrates all DP and DM termination resistances and requires a minimal
number of external components.
The ULPI interface consists of 12 interface pins; 8 bi-directional data pins, 3 control pins, and a 60 MHz clock. By using
the 12 pin ULPI interface the USB3300 is able to provide support for the full range of UTMI+ Level 3 through Level 0,
as shown in Figure 1-2. This allows USB3300 to work as a HS and FS peripheral and as a HS, FS, and LS Host.
The USB3300 can also, as an option, fully support the On-the-Go (OTG) protocol defined in the On-The-Go Supplement
to the USB 2.0 Specification. On-the-Go allows the USB3300 to function like a host, or peripheral configured dynamically
by software. For example, a cell phone may connect to a computer as a peripheral to exchange address information or
connect to a printer as a host to print pictures. Finally the OTG enabled device can connect to another OTG enabled
device to exchange information. All this is supported using a single low profile Mini-AB USB connector.
Designs not needing OTG can ignore the OTG feature set.
In addition to the advantages of the leading edge ULPI interface, the use of Microchip’s advanced analog technology
enables the USB3300 to consume a minimum amount of power which results in maximized battery life for portable appli-
cations.
FIGURE 1-1: BASIC ULPI USB DEVICE BLOCK DIAGRAM
USB3300
Hi-Speed
Analog
w/ OTG
ULPI
Digital
Logic
USB
Connector
(Standard
or Mini)
ULPI
LINK DM
VBUS
DP
ID
STP
CLK
DIR
NXT
DATA[7:0]
32 Pin QFN
2014-2015 Microchip Technology Inc. DS00001783C-page 5
USB3300
1.2 Reference Documents
Universal Serial Bus Specification, Revision 2.0, April 27, 2000
On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a, June 24, 2003
USB 2.0 Transceiver Macrocell Interface (UTMI) Specification, Version 1.02, May 27, 2000
UTMI+ Specification, Revision 1.0, February 2, 2004
UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1
FIGURE 1-2: ULPI INTERFACE FEATURES AS RELATED TO UTMI+
UTMI+ Level 0
Hi-Speed Peripherals Only
ADDED FEATURES
USB3300
ULPI
Hi-Speed Peripheral, host controllers, On-the-
Go devices with 12 pin interface
(HS, FS, LS, preamble packet)
UTMI+ Level 3
Hi-Speed Peripheral, host controllers, On-
the-Go devices
(HS, FS, LS, preamble packet)
UTMI+ Level 2
Hi-Speed Peripheral, host controllers, On-
the-Go devices
(HS, FS, and LS but no preamble packet)
UTMI+ Level 1
Hi-Speed Peripheral, host controllers,
and On-the-Go devices
(HS and FS Only)
USB3500
USB3450
USB3280
USB3250
USB3300
DS00001783C-page 6 2014-2015 Microchip Technology Inc.
2.0 FUNCTIONAL OVERVIEW
The USB3300 is a highly integrated USB PHY. It contains a complete Hi-Speed USB 2.0 PHY with the ULPI industry
standard interface to support fast time to market for a USB product. The USB3300 is composed of the functional blocks
shown in Figure 2-1 below. Details of these individual blocks are described in Architecture Overview on page 16.
FIGURE 2-1: USB3300 BLOCK DIAGRAM
ULPI Digital
OTG
Module
DATA[7:0]
24 MHz
XTAL
Internal
Regulator &
POR
5V
Power
Supply
Bias
Gen.
CLKOUT
NXT
DIR
STP
VDD3.3 XTAL &
PLL
XI
CPEN
VBUS
ID
VDD3.3
DP
DM
USB3300
VDD1.8
VDDA1.8
m
XO
RBIAS
EXTVBUS FAULT
Mini-AB
USB
Connector
HS XCVR
FS/LS
XCVR
Resistors
Rpu_dp
Rpd_dm
Rpd_dp
Rpu_dm
EN
2014-2015 Microchip Technology Inc. DS00001783C-page 7
USB3300
3.0 PIN LAYOUT
The USB3300 is offered in a 32 pin QFN package (5 x 5 x 0.9mm). The pin definitions and locations are documented
below.
3.1 USB3300 Pin Diagram
The exposed flag of the QFN package must be connected to ground with a via array to the ground plane. This is the
main ground connection for the USB3300.
3.2 Pin Function
FIGURE 3-1: USB3300 PIN DIAGRAM - TOP VIEW
TABLE 3-1: USB3300 PIN DEFINITIONS 32-PIN QFN PACKAGE
Pin Name Direction,
Type Active
Level Description
1 GND Ground N/A Ground
2 GND Ground N/A Ground
3CPEN Output,
CMOS High External 5 volt supply enable. This pin is used to
enable the external Vbus power supply. The CPEN pin
is low on POR.
4VBUS I/O,
Analog N/A VBUS pin of the USB cable. The USB3300 uses this
pin for the Vbus comparator inputs and for Vbus
pulsing during session request protocol.
5ID Input,
Analog N/A ID pin of the USB cable. For non-OTG applications
this pin can be floated. For an A-Device ID = 0. For a
B-Device ID = 1.
GND
GND
CPEN
VBUS
ID
VDD3.3
DM
DP
RESET
EXTVBUS
NXT
DIR
STP
CLKOUT
VDD3.3
VDD1.8
DATA0
DATA7
DATA5
DATA6
DATA2
DATA3
DATA4
DATA1
RBIAS
VDD3.3
XO
VDD1.8
VDD3.3
VDDA1.8
XI
REG_EN
USB3300
Hi-Speed USB2
ULPI PHY
32 Pin QFN
1
2
3
4
5
6
7
8
USB3300
Hi-Speed USB
ULPI PHY
32 Pin QFN
GND FLAG
9
10
11
12
13
14
15
16
24
23
22
21
20
19
18
17
32
31
30
29
28
27
26
25
USB3300
DS00001783C-page 8 2014-2015 Microchip Technology Inc.
6VDD3.3 Power N/A 3.3V Supply. A 0.1uF bypass capacitor should be
connected between this pin and the ground plane on
the PCB.
7DP I/O,
Analog N/A D+ pin of the USB cable.
8DM I/O,
Analog N/A D- pin of the USB cable.
9RESET Input, CMOS High Optional active high transceiver reset. This is the
same as a write to the ULPI Reset, address 04h, bit
5. This does not reset the ULPI register set. This pin
includes an integrated pull-down resistor to ground. If
not used, this pin can be floated or connected to
ground (recommended).
See Section 6.1.11, "Reset Pin" for details.
10 EXTVBUS Input, CMOS High External Vbus Detect. Connect to fault output of an
external USB power switch or an external Vbus Valid
comparator. See Section 6.5.4, "External Vbus
Indicator," on page 38 for details. This pin has a pull
down resistor to prevent it from floating when the ULPI
bit UseExternalVbusIndicator is set to 0.
11 NXT Output,
CMOS High The PHY asserts NXT to throttle the data. When the
Link is sending data to the PHY, NXT indicates when
the current byte has been accepted by the PHY. The
Link places the next byte on the data bus in the
following clock cycle.
12 DIR Output,
CMOS N/A Controls the direction of the data bus. When the PHY
has data to transfer to the Link, it drives DIR high to
take ownership of the bus. When the PHY has no data
to transfer it drives DIR low and monitors the bus for
commands from the Link. The PHY will pull DIR high
whenever the interface cannot accept data from the
Link, such as during PLL start-up.
13 STP Input,
CMOS High The Link asserts STP for one clock cycle to stop the
data stream currently on the bus. If the Link is sending
data to the PHY, STP indicates the last byte of data
was on the bus in the previous cycle. The STP pin
also includes the interface protection detailed in
Section 6.1.9.3, "Interface Protection," on page 31.
14 CLKOUT Output,
CMOS N/A 60MHz reference clock output. All ULPI signals are
driven synchronous to the rising edge of this clock.
15 VDD1.8 Power N/A 1.8V for digital circuitry on chip. Supplied by On-Chip
Regulator when REG_EN is active. Place a 0.1uF
capacitor near this pin and connect the capacitor from
this pin to ground. Connect pin 15 to pin 26.
16 VDD3.3 Power N/A A 0.1uF bypass capacitor should be connected
between this pin and the ground plane on the PCB.
TABLE 3-1: USB3300 PIN DEFINITIONS 32-PIN QFN PACKAGE (CONTINUED)
Pin Name Direction,
Type Active
Level Description
2014-2015 Microchip Technology Inc. DS00001783C-page 9
USB3300
17 DATA[7] I/O,
CMOS,
Pull-low
N/A 8-bit bi-directional data bus. Bus ownership is
determined by DIR. The Link and PHY initiate data
transfers by driving a non-zero pattern onto the data
bus. ULPI defines interface timing for a single-edge
data transfers with respect to rising edge of CLKOUT.
DATA[7] is the MSB and DATA[0] is the LSB.
18 DATA[6] I/O,
CMOS,
Pull-low
N/A
19 DATA[5] I/O,
CMOS,
Pull-low
N/A
20 DATA[4] I/O,
CMOS,
Pull-low
N/A
21 DATA[3] I/O,
CMOS,
Pull-low
N/A
22 DATA[2] I/O,
CMOS,
Pull-low
N/A
23 DATA[1] I/O,
CMOS,
Pull-low
N/A
24 DATA[0] I/O,
CMOS,
Pull-low
N/A
25 VDD3.3 Power N/A A 0.1uF bypass capacitor should be connected
between this pin and the ground plane on the PCB.
26 VDD1.8 Power N/A 1.8V for digital circuitry on chip. Supplied by On-Chip
Regulator when REG_EN is active. When using the
internal regulators, place a 4.7uF low-ESR capacitor
near this pin and connect the capacitor from this pin
to ground. Connect pin 26 to pin 15. Do not connect
VDD1.8 to VDDA1.8 when using internal regulators.
When the regulators are disabled, pin 29 may be
connected to pins 26 and 15.
27 XO Output,
Analog N/A Crystal pin. If using an external clock on XI this pin
should be floated.
28 XI Input,
Analog N/A Crystal pin. A 24MHz crystal is supported. The crystal
is placed across XI and XO. An external 24MHz clock
source may be driven into XI in place of a crystal.
29 VDDA1.8 Power N/A 1.8V for analog circuitry on chip. Supplied by On-Chip
Regulator when REG_EN is active. Place a 0.1uF
capacitor near this pin and connect the capacitor from
this pin to ground. When using the internal regulators,
place a 4.7uF low-ESR capacitor near this pin in
parallel with the 0.1uF capacitor. Do not connect
VDD1.8A to VDD1.8 when using internal regulators.
When the regulators are disabled, pin 29 may be
connected to pins 26 and 15.
30 VDD3.3 Power N/A Analog 3.3 volt supply. A 0.1uF low ESR bypass
capacitor connected to the ground plane of the PCB is
recommended.
TABLE 3-1: USB3300 PIN DEFINITIONS 32-PIN QFN PACKAGE (CONTINUED)
Pin Name Direction,
Type Active
Level Description
USB3300
DS00001783C-page 10 2014-2015 Microchip Technology Inc.
31 REG_EN I/O,
CMOS,
Pull-low
N/A On-Chip 1.8V regulator enable. Connect to ground to
disable both of the on chip (VDDA1.8 and VDD1.8)
regulators. When regulators are disabled:
External 1.8V must be supplied to VDDA1.8 and
VDD1.8 pins. When the regulators are disabled,
VDDA1.8 may be connected to VDD1.8 and a
bypass capacitor (0.1uF recommended) should be
connected to each pin.
The voltage at VDD3.3 must be at least 2.64V (0.8
* 3.3V) before voltage is applied to VDDA1.8 and
VDD1.8.
32 RBIAS Analog,
CMOS N/A External 12K +/- 1% bias resistor to ground.
GND FLAG Ground N/A Ground. The flag must be connected to the ground
plane with a via array under the exposed flag. This is
the main ground for the IC.
TABLE 3-1: USB3300 PIN DEFINITIONS 32-PIN QFN PACKAGE (CONTINUED)
Pin Name Direction,
Type Active
Level Description
2014-2015 Microchip Technology Inc. DS00001783C-page 11
USB3300
4.0 OPERATIONAL DESCRIPTION
TABLE 4-1: MAXIMUM GUARANTEED RATINGS
Parameter Symbol Condition MIN TYP MAX Units
Maximum VBUS, ID,
EXTVBUS, DP, and DM
voltage to GND
VMAX_5V -0.5 +5.5 V
Maximum VDD1.8 and
VDDA1.8 voltage to
Ground
VMAX_1.8V -0.5 2.5 V
Maximum 3.3V supply
voltage to Ground VMAX_3.3V -0.5 4.0 V
Maximum I/O voltage to
Ground VMAX_IN -0.5 4.0 V
Operating Temperature TMAX_OP -40 85 C
Storage Temperature TMAX_STG -55 150 C
ESD PERFORMANCE
All Pins VHBM Human Body Model 8 kV
LATCH-UP PERFORMANCE
All Pins ILTCH_UP EIA/JESD 78, Class II 150 mA
Note: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
TABLE 4-2: RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Condition MIN TYP MAX Units
VDD3.3 to GND VDD3.3 3.0 3.3 3.6 V
Input Voltage on Digital
Pins VI0.0 VDD3.3 V
Voltage on Analog I/O
Pins (DP, DM, ID) VI(I/O) 0.0 VDD3.3 V
VBUS to GND VVBUS 0.0 5.25
Ambient Temperature TA-40 85 C
USB3300
DS00001783C-page 12 2014-2015 Microchip Technology Inc.
5.0 ELECTRICAL CHARACTERISTICS
TABLE 5-1: ELECTRICAL CHARACTERISTICS: SUPPLY PINS
Parameter Symbol Condition MIN TYP MAX Units
Unconfigured Current IAVG(UCFG) Device Unconfigured Same as Idle mA
FS Idle 3.3V Current IAVG(FS33) FS idle not data transfer 18.8 21.9 mA
FS Idle 1.8V Current IAVG(FS18) FS idle not data transfer 36.4 43.2 mA
FS Transmit 3.3V Current IAVG(FSTX33) FS current during data transmit 36.0 41.6 mA
FS Transmit 1.8V Current IAVG(FSTX18) FS current during data transmit 36.8 43.2 mA
FS Receive 3.3V Current IAVG(FSRX33) FS current during data receive 22.5 27.0 mA
FS Receive 1.8V Current IAVG(FSRX18) FS current during data receive 36.7 43.4 mA
HS Idle 3.3V Current IAVG(HS33) HS idle not data transfer 22.1 25.4 mA
HS Idle 1.8V Current IAVG(HS18) HS idle not data transfer 38.7 45.6 mA
HS Transmit 3.3V Current IAVG(HSTX33) HS current during data
transmit 25.4 29.0 mA
HS Transmit 1.8V Current IAVG(HSTX18) HS current during data
transmit 39.1 46.2 mA
HS Receive 3.3V Current IAVG(HSRX33) HS current during data receive 23.0 26.6 mA
HS Receive 1.8V Current IAVG(HSRX18) HS current during data receive 39.6 46.8 mA
Low Power Mode 3.3V Current IDD(LPM33) VBUS 15k pull-down and
1.5k pull-up resistor currents
not included.
59.4 uA
Low Power Mode 1.8V Current IDD(LPM18) VBUS 15k pull-down and
1.5k pull-up resistor currents
not included.
25.5 uA
Note:
•V
DD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to +85C; unless otherwise specified.
SessEnd and VbusVld comparators disabled. Interface protection disabled.
Maximum current numbers are worst case over supply voltage, temperature and process.
TABLE 5-2: ELECTRICAL CHARACTERISTICS: CLKOUT START-UP
Parameter Symbol Condition MIN TYP MAX Units
Suspend Recovery Time TSTART 2.25 3.5 ms
Note: The USB330 uses the AutoResume feature, Section 6.3, for host start-up of less than 1ms.
TABLE 5-3: DC ELECTRICAL CHARACTERISTICS: LOGIC PINS
Parameter Symbol Condition MIN TYP MAX Units
Low-Level Input Voltage VIL VSS 0.8 V
High-Level Input Voltage VIH 2.0 VDD3.3 V
Low-Level Output Voltage VOL IOL = 8mA 0.4 V
High-Level Output Voltage VOH IOH = -8mA VDD3.3 -
0.4
V
Input Leakage Current ILI ±10 uA
Pin Capacitance Cpin 4 pF
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to +85C; unless otherwise specified.
2014-2015 Microchip Technology Inc. DS00001783C-page 13
USB3300
TABLE 5-4: DC ELECTRICAL CHARACTERISTICS: ANALOG I/O PINS (DP/DM)
Parameter Symbol Condition MIN TYP MAX Units
FS FUNCTIONALITY
Input levels
Differential Receiver Input
Sensitivity VDIFS | V(DP) - V(DM) | 0.2 V
Differential Receiver
Common-Mode Voltage VCMFS 0.8 2.5 V
Single-Ended Receiver Low
Level Input Voltage VILSE 0.8 V
Single-Ended Receiver High
Level Input Voltage VIHSE 2.0 V
Single-Ended Receiver
Hysteresis VHYSSE 0.050 0.150 V
Output Levels
Low Level Output Voltage VFSOL Pull-up resistor on DP;
RL = 1.5k to VDD3.3
0.3 V
High Level Output Voltage VFSOH Pull-down resistor on DP,
DM;
RL = 15k to GND
2.8 3.6 V
Termination
Driver Output Impedance for
HS and FS ZHSDRV Steady state drive 40.5 45 49.5 Ù
Input Impedance ZINP TX, RPU disabled 1.0 M
Pull-up Resistor Impedance ZPU Bus Idle 0.900 1.24 1.575 k
Pull-up Resistor Impedance ZPURX Device Receiving 1.425 2.26 3.09 k
Pull-dn Resistor Impedance ZPD 14.25 15.0 15.75 k
HS FUNCTIONALITY
Input levels
HS Differential Input Sensitivity VDIHS | V(DP) - V(DM) | 100 mV
HS Data Signaling Common
Mode Voltage Range VCMHS -50 500 mV
HS Squelch Detection
Threshold (Differential) VHSSQ
Squelch Threshold 100 mV
Un-squelch Threshold 150 mV
Output Levels
Hi-Speed Low Level
Output Voltage (DP/DM
referenced to GND)
VHSOL 45 load -10 10 mV
Hi-Speed High Level
Output Voltage (DP/DM
referenced to GND)
VHSOH 45 load 360 440 mV
Hi-Speed IDLE Level
Output Voltage (DP/DM
referenced to GND)
VOLHS 45 load -10 10 mV
Chirp-J Output Voltage
(Differential) VCHIRPJ HS termination resistor
disabled, pull-up resistor
connected. 45 load.
700 1100 mV
Chirp-K Output Voltage
(Differential) VCHIRPK HS termination resistor
disabled, pull-up resistor
connected. 45 load.
-900 -500 mV
USB3300
DS00001783C-page 14 2014-2015 Microchip Technology Inc.
Leakage Current
OFF-State Leakage Current ILZ ±10 uA
Port Capacitance
Transceiver Input Capacitance CIN Pin to GND 5 10 pF
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to +85C; unless otherwise specified.
TABLE 5-5: DYNAMIC CHARACTERISTICS: ANALOG I/O PINS (DP/DM)
Parameter Symbol Condition MIN TYP MAX Units
FS Output Driver Timing
Rise Time TFSR CL = 50pF; 10 to 90% of
|VOH - VOL|420ns
Fall Time TFFF CL = 50pF; 10 to 90% of
|VOH - VOL|420ns
Output Signal Crossover
Voltage VCRS Excluding the first transition
from IDLE state 1.3 2.0 V
Differential Rise/Fall Time
Matching FRFM Excluding the first transition
from IDLE state 90 111.1 %
HS Output Driver Timing
Differential Rise Time THSR 500 ps
Differential Fall Time THSF 500 ps
Driver Waveform
Requirements Eye pattern of Template 1
in USB 2.0 specification
Hi-Speed Mode Timing
Receiver Waveform
Requirements Eye pattern of Template 4
in USB 2.0 specification
Data Source Jitter and
Receiver Jitter Tolerance Eye pattern of Template 4
in USB 2.0 specification
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to +85C; unless otherwise specified.
TABLE 5-6: OTG ELECTRICAL CHARACTERISTICS
Parameter Symbol Condition MIN TYP MAX Units
SessEnd trip point VSessEnd 0.2 0.5 0.8 V
SessVld trip point VSessVld 0.8 1.4 2.0 V
VBUSVld trip point VVbusVld 4.4 4.58 4.75 V
Vbus Pull-Up RVbusPu Vbus to VDD3.3
(ChargeVbus = 1) 281 340 Ù
Vbus Pull-down RVbusPd Vbus to GND
(DisChargeVbus = 1) 656 850 Ù
Vbus Impedance RVbus Vbus to GND 40 75 100 k
ID pull-up resistance RIdPullUp IdPullup = 1 80 100 120 k
ID pull-up resistance RId IdPullup = 0 1 M
STP pull-up resistance RSTP InterfaceProtectDisable = 0 240 330 600 k
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to +85C; unless otherwise specified.
TABLE 5-4: DC ELECTRICAL CHARACTERISTICS: ANALOG I/O PINS (DP/DM) (CONTINUED)
Parameter Symbol Condition MIN TYP MAX Units
2014-2015 Microchip Technology Inc. DS00001783C-page 15
USB3300
5.1 Piezoelectric Resonator for Internal Oscillator
The internal oscillator may be used with an external quartz crystal or ceramic resonator as described in Section 6.3. See
Table 5-8 for the recommended crystal specifications. See Table 5-9 for the ceramic resonator part number for commer-
cial temperature applications. At this time, the ceramic resonator does not offer sufficient temperature stability to operate
over the industrial temperature range.
Note 5-1 The required bit rate accuracy for Hi-Speed USB applications is ±500 ppm as provided in the USB
2.0 Specification. This takes into account the effect of voltage, temperature, aging, etc.
Note 5-2 0oC for commercial applications, -40oC for industrial applications.
Note 5-3 +70oC for commercial applications, +85oC for industrial applications.
Note 5-4 This number includes the pad, the bond wire and the lead frame. Printed Circuit Board (PCB)
capacitance is not included in this value. The PCB capacitance value and the capacitance value of
the XO and XI pins are required to accurately calculate the value of the two external load capacitors.
Note 5-5 This is a generic part number assigned by Murata. The oscillating frequency is affected by stray
capacitance on the Printed Circuit Board (PCB). Murata will assign the final part number for each
customer’s PCB after characterizing the customer’s PCB design.
TABLE 5-7: REGULATOR OUTPUT VOLTAGES
Parameter Symbol Condition MIN TYP MAX Units
VDDA1.8 VDDA1.8 Normal Operation
(SuspendM = 1) 1.6 1.8 2.0 V
VDDA1.8 VDDA1.8 Low Power Mode
(SuspendM = 0) 0V
VDD1.8 VDD1.8 1.6 1.8 2.0 V
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -040C to +85C; unless otherwise specified.
TABLE 5-8: USB3300 QUARTZ CRYSTAL SPECIFICATIONS
Parameter Symbol MIN TYP MAX Units Notes
Crystal Cut AT, typ
Crystal Oscillation Mode Fundamental Mode
Crystal Calibration Mode Parallel Resonant Mode
Frequency Ffund -24-MHz
Total Allowable PPM Budget - - ±500 PPM Note 5-1
Shunt Capacitance CO-7 typ-pF
Load Capacitance CL- 20 typ - pF
Drive Level PW0.5 - - mW
Equivalent Series Resistance R1--30Ohm
Operating Temperature Range Note 5-2 -Note 5-3 oC
USB3300 XI Pin Capacitance - 3 typ - pF Note 5-4
USB3300 XO Pin Capacitance - 3 typ - pF Note 5-4
TABLE 5-9: USB3300 CERAMIC RESONATOR PART NUMBER
Frequency Murata Part Number Notes
24 MHz CSTCE24M0XK1***-R0 Commercial Temp Only, Note 5-5
USB3300
DS00001783C-page 16 2014-2015 Microchip Technology Inc.
6.0 ARCHITECTURE OVERVIEW
The USB3300 architecture can be broken down into the following blocks shown in Figure 6-1, "Simplified USB3300
Architecture" below.
6.1 ULPI Digital
The USB3300 uses the industry standard ULPI digital interface to facilitate communication between the PHY and Link
(device controller). The ULPI interface is designed to reduce the number of pins required to connect a discrete USB
PHY to an ASIC or digital controller. For example, a full UTMI+ Level 3 OTG interface requires 54 signals while a ULPI
interface requires only 12 signals.
The ULPI interface is documented completely in the “UTMI+ Low Pin Interface (ULPI) Specification” document
(www.ulpi.org). The following sections highlight the key operating modes of the USB3300 digital interface.
6.1.1 OVERVIEW
Figure 6-2 illustrates the block diagram of the ULPI digital functions. It should be noted that this PHY does not use a
“ULPI wrapper” around a UTMI+ PHY core as the ULPI specification implies.
The advantage of a “wrapper less” architecture is that the PHY has a lower USB latency than a design which must first
register signals into the PHY’s wrapper before the transfer to the PHY core. A low latency PHY allows a Link to use a
wrapper around a UTMI Link and still make the required USB turn-around timing given in the USB 2.0 specification.
FIGURE 6-1: SIMPLIFIED USB3300 ARCHITECTURE
ULPI Digital
OTG
Module
DATA[7:0]
Internal
Regulator &
POR
Bias
Gen.
CLKOUT
NXT
DIR
STP
VDD3.3 XTAL &
PLL
XI
CPEN
VBUS
ID
VDD3.3
DP
DM
USB3300
VDD1.8
VDDA1.8
XO
RBIAS
EXTVBUS
HS XCVR
FS/LS
XCVR
Resistors
Rpu_dp
Rpd_dm
Rpd_dp
Rpu_dm
2014-2015 Microchip Technology Inc. DS00001783C-page 17
USB3300
RxEndDelay maximum allowed by the UTMI+/ULPI for 8-bit data is 63 high speed clocks. USB3300 uses a low latency
high speed receiver path to lower the RxEndDelay to 43 high speed clocks. This low latency design gives the Link more
cycles to make decisions and reduces the Link complexity. This is the result of the “wrapper less” architecture of the
USB3300. This low RxEndDelay should allow legacy UTMI Links to use a “wrapper” to convert the UTMI+ interface to
a ULPI interface.
In Figure 6-2, "ULPI Digital Block Diagram", a single ULPI Protocol Block decodes the ULPI 8-bit bi-directional bus when
the Link addresses the PHY. The Link must use the DIR output to determine direction of the ULPI data bus. The
USB3300 is the “bus arbitrator”. The ULPI Protocol Block will route data/commands to the transmitter or the ULPI reg-
ister array.
FIGURE 6-2: ULPI DIGITAL BLOCK DIAGRAM
Data[7:0]
Interrupt
Control
High Speed TX
Full Speed TX
Low Speed TX
High Speed Data
Recovery
Full / Low Speed
Data Recovery
ULPI Protocol
Block
6pinSerial Mode
XcvrSelect[1:0]
TermSelect
OpMode[1:0]
Reset
SuspendM
3pinSerial Mode
ClockSuspendM
AutoResume
Indicator Complement
Indicator Pass Thru
Interface Protect Disable
IdPullUp
DpPulldown
DmPulldown
DischrgVbus
ChrgVbus
DrvVbus
DrvVbusExternal
UseExternal Vbus Indicator
InterruptEnable Rise[4:0]
InterruptEnableFall[4:0]
InterruptStatus[4:0]
InterruptLatch[4:0]
Linestates[1:0]
VbusValid
SessionValid
SessionEnd
HS Tx Data
FS/LS Tx Data
HS RX Data
FS/LS Data
NOTE:
The U SB3300 u ses
a w rapperless ULP I
in ter fa ce .
DIR
NXT
STP
Tx Data
Rx Data
POR
ULPI Register
Array
HostDisconnect
IdGnd
To OTG
Module
Transceiver
Control
Module
To USB
Transceiver
From OTG
Module
To USB
Transceiver
RXD CMD
From USB
Transceiver
USB3300
DS00001783C-page 18 2014-2015 Microchip Technology Inc.
6.1.2 ULPI INTERFACE SIGNALS
UTMI+ Low Pin Interface (ULPI) uses 12-pins to connect a full OTG Host / Device PHY to an SOC. A reduction of exter-
nal pins on the PHY is accomplished by realizing that many of the relatively static configuration pins (xcvrselect[1:0],
termselect, opmode[1:0], and DpPullDown DmPulldown to list a few,) can be implemented by having a internal static
register array.
An 8-bit bi-directional data bus clocked at 60Mhz allows the Link to access this internal register array and transfer USB
packets to and from the PHY. The remaining 3 pins function to control the data flow and arbitrate the data bus.
Direction of the 8-bit data bus is control by the DIR output from the PHY. Another output NXT is used to control data
flow into and out of the device. Finally, STP, which is in input to the PHY, terminates transfers and is used to start up and
resume from a suspend state.
The 12 signals are described below in Table 6-1, "ULPI Interface Signals".
USB3300 implements a Single Data Rate (SDR) ULPI interface with all data transfers happening on the rising edge of
the CLKOUT. CLKOUT is supplied by the PHY.
The ULPI interface supports the two basic modes of operation, Synchronous Mode and Low Power Mode. Synchronous
Mode with the signals all changing relative to the 60MHz clockout. Low Power Mode where the clock is off in a sus-
pended state and the lower two bits of the data bus contain the linestate[1:0] signals. ULPI adds to Low Power Mode,
an interrupt output which permits the Link to receive an asynchronous interrupt when the OTG comparators, or ID pin
change state.
In Synchronous Mode operation, data is transferred on the rising edge of CLKOUT. Direction of the data bus is deter-
mined by the state of DIR. When DIR is high, the PHY is driving DATA[7:0]. When DIR is low, the Link is driving
DATA[7:0].
Each time DIR changes, a “turn-around” cycle occurs where neither the Link nor PHY drive the data bus for one clock
cycle. During the “turn–around“ cycle, the state of DATA[7:0] is unknown and the PHY will not read the data bus.
Because USB uses a bit-stuffing encoding, some means of allowing the PHY to throttle the USB transmit data is needed.
The ULPI signal NXT is used to request the next byte to be placed on the databus by the Link layer.
TABLE 6-1: ULPI INTERFACE SIGNALS
Signal Direction Description
CLKOUT OUT 60MHz reference clock output. All ULPI signals are driven synchronous to the rising
edge of this clock.
DATA[7:0] I/O 8-bit bi-directional data bus. Bus ownership is determined by DIR. The Link and PHY
initiate data transfers by driving a non-zero pattern onto the data bus. ULPI defines
interface timing for a single-edge data transfers with respect to rising edge of
CLKOUT.
DIR OUT Controls the direction of the data bus. When the PHY has data to transfer to the
Link, it drives DIR high to take ownership of the bus. When the PHY has no data to
transfer it drives DIR low and monitors the bus for commands from the Link. The
PHY will pull DIR high whenever the interface cannot accept data from the Link,
such as during PLL start-up.
STP IN The Link asserts STP for one clock cycle to stop the data stream currently on the
bus. If the Link is sending data to the PHY, STP indicates the last byte of data was
on the bus in the previous cycle.
NXT OUT The PHY asserts NXT to throttle the data. When the Link is sending data to the PHY,
NXT indicates when the current byte has been accepted by the PHY. The Link
places the next byte on the data bus in the following clock cycle.
2014-2015 Microchip Technology Inc. DS00001783C-page 19
USB3300
6.1.3 ULPI INTERFACE TIMING
The control and data timing relationships are given in Figure 6-3, "ULPI Timing Diagram" and Table 6-2, "ULPI Interface
Timing". The USB300 PHY provides CLKOUT and all timing is relative to the rising clock edge. The timing relationships
detailed below apply to Synchronous Mode only.
6.1.4 ULPI REGISTER ARRAY
The USB3300 PHY implements all of the ULPI registers detailed in the ULPI revision 1.1 specification. The complete
USB3300 ULPI register set is shown in Table 6-3, "ULPI Register Map". All registers are 8 bits. This table also includes
the default states of the register upon POR. The RESET bit in the Function Control Register does not reset the bits of
the ULPI register array. The Link should not read or write to any registers not listed in this table.
FIGURE 6-3: ULPI TIMING DIAGRAM
TABLE 6-2: ULPI INTERFACE TIMING
Parameter Symbol MIN MAX Units
Setup time (control in, 8-bit data in) TSC,TSD 5.0 ns
Hold time (control in, 8-bit data in) THC, THD 0ns
Output delay (control out, 8-bit data out) TDC, TDD 2.0 5.0 ns
Note: VDD3.3 = 3.0 to 3.6V; VSS = 0V; TA = -40C to 85C; unless otherwise specified.
Clock Out -
CLKOUT
Control In -
STP
Data In -
DATA[7:0]
Control Out -
DIR, NXT
Data Out -
DATA[7:0]
TSC
TSD
THC
THD
TDC TDC
TDD
USB3300
DS00001783C-page 20 2014-2015 Microchip Technology Inc.
6.1.4.1 Vendor ID Low: Address = 00h (read only)
6.1.4.2 Vendor ID High: Address = 01h (read only)
6.1.4.3 Product ID Low: Address = 02h (read only)
6.1.4.4 Vendor ID Low: Address = 03h (read only)
TABLE 6-3: ULPI REGISTER MAP
Register Name Default
State
Address (6bit)
Read Write Set Clear
Vendor ID Low 24h 00h - - -
Vendor ID High 04h 01h - - -
Product ID Low 04h 02h - - -
Product ID High 00h 03h - - -
Function Control 41h 04-06h 04h 05h 06h
Interface Control 00h 07-09h 07h 08h 09h
OTG Control 06h 0A-0Ch 0Ah 0Bh 0Ch
USB Interrupt Enable Rising 1Fh 0D-0Fh 0Dh 0Eh 0Fh
USB Interrupt Enable Falling 1Fh 10-12h 10h 11h 12h
USB Interrupt Status 00h 13h - - -
USB Interrupt Latch 00h 14h - - -
Debug 00h 15h - - -
Scratch Register 00h 16-18h 16h 17h 18h
Field Name Bit Default Description
Vendor ID Low 7:0 24h Microchip Vendor ID
Field Name Bit Default Description
Vendor ID High 7:0 04h Microchip Vendor ID
Field Name Bit Default Description
Product ID Low 7:0 04h Microchip Product ID revision A0
Field Name Bit Default Description
Product ID High 7:0 00h Microchip Product ID revision A0
2014-2015 Microchip Technology Inc. DS00001783C-page 21
USB3300
6.1.4.5 Function Control: Address = 04-06h (read), 04h (write), 05h (set), 06h (clear)
6.1.4.6 Interface Control: Address = 07-09h (read), 07h (write), 08h (set), 09h (clear)
Field Name Bit Default Description
XcvrSelect[1:0] 1:0 01b Selects the required transceiver speed.
00b: Enables HS transceiver
01b: Enables FS transceiver
10b: Enables LS transceiver
11b: Enables FS transceiver for LS packets (FS preamble
automatically pre-pended)
TermSelect 2 0b Controls the DP and DM termination depending on XcvrSelect,
OpMode, DpPulldown, and DmPulldown. The Dp and DM
termination is detailed in Table 6-8, "DP/DM Termination vs.
Signaling Mode".
OpMode 4:3 00b Selects the required bit encoding style during transmit.
00b: Normal Operation
01b: Non-Driving
10b: Disable bit-stuff and NRZI encoding
11b: Reserved
Reset 5 0b Active high transceiver reset. This reset does not reset the ULPI
interface or register set. Automatically clears after reset is
complete.
SuspendM 6 1b Active low PHY suspend. When cleared the PHY will enter Low
Power Mode as detailed in Section 6.1.9, "Low Power Mode".
Automatically set when exiting Low Power Mode.
Reserved 7 0b Driven low.
Field Name Bit Default Description
6-pin FsLsSerialMode 0 0b Changes the ULPI interface to a 6-pin Serial Mode. The PHY will
automatically clear this bit when exiting serial mode.
3-pin FsLsSerialMode 1 0b Changes the ULPI interface to a 3-pin Serial Mode. The PHY will
automatically clear this bit when exiting serial mode.
Reserved 2 0b Driven low.
ClockSuspendM 3 0b Enables Link to turn on 60MHz CLKOUT in serial mode.
0b: Disable clock in serial mode.
1b: Enable clock in serial mode.
AutoResume 4 0b Only applicable in Host mode. Enables the PHY to automatically
transmit resume signaling. This function is detailed in Section
6.1.7.4, "Host Resume K".
IndicatorComplement 5 0b Inverts the EXTVBUS signal. This function is detailed in Section
6.5.4, "External Vbus Indicator".
IndicatorPassThru 6 0b Disables anding the internal VBUS comparator with the EXTVBUS
input when asserted. This function is detailed in Section 6.5.4.
InterfaceProtectDisable 7 0b Used to disable the integrated STP pull-up resistor used for
interface protection. This function is detailed in Section 6.1.9.3,
"Interface Protection".
USB3300
DS00001783C-page 22 2014-2015 Microchip Technology Inc.
6.1.4.7 OTG Control: Address = 0A-0Ch (read), 0Ah (write), 0Bh (set), 0Ch (clear)
6.1.4.8 USB Interrupt Enable Rising: Address = 0D-0Fh (read), 0Dh (write), 0Eh (set), 0Fh (clear)
Field Name Bit Default Description
IdPullup 0 0b Connects a pull-up resistor from the ID pin to VDD3.3
0b: Disables the pull-up resistor
1b: Enables the pull-up resistor
DpPulldown 1 1b Enables the 15k Ohm pull-down resistor on DP.
0b: Pull-down resistor not connected to DP
1b: Pull-down resistor connected to DP
DmPulldown 2 1b Enables the 15k Ohm pull-down resistor on DM.
0b: Pull-down resistor not connected to DM
1b: Pull-down resistor connected to DM
DischrgVbus 3 0b This bit is only used during SRP. Connects a resistor from VBUS
to ground to discharge VBUS.
0b: disconnect resistor from VBUS to ground
1b: connect resistor from VBUS to ground
ChrgVbus 4 0b This bit is only used during SRP. Connects a resistor from VBUS
to VDD3.3 to charge VBUS above the SessValid threshold.
0b: disconnect resistor from VBUS to VDD3.3
1b: connect resistor from VBUS to VDD3.3
DrvVbus 5 0b Used to enable external 5 volt supply to drive 5 volts on VBUS.
This signal is ored with DrvVbusExternal.
0b: do not drive VBUS
1b: drive VBUS
DrvVbusExternal 6 0b Used to enable external 5 volt supply to drive 5 volts on VBUS.
This signal is ored with DrvVbus.
0b: do not drive VBUS
1b: drive VBUS
UseExternalVbus
Indicator
7 0b Tells the PHY to use an external VBUS over-current or voltage
indicator. This function is detailed in Section 6.5.4, "External Vbus
Indicator".
0b: Use the internal VbusValid comparator
1b: Use the EXTVBUS input as for VbusValid signal.
Field Name Bit Default Description
HostDisconnect Rise 0 1b Generate an interrupt event notification when Hostdisconnect
changes from low to high. Applicable only in host mode.
VbusValid Rise 1 1b Generate an interrupt event notification when Vbusvalid changes
from low to high.
SessValid Rise 2 1b Generate an interrupt event notification when SessValid changes
from low to high.
SessEnd Rise 3 1b Generate an interrupt event notification when SessEnd changes
from low to high.
IdGnd Rise 4 1b Generate an interrupt event notification when IdGnd changes from
low to high.
Reserved 7:5 0h Driven low.
2014-2015 Microchip Technology Inc. DS00001783C-page 23
USB3300
6.1.4.9 USB Interrupt Enable Falling: Address = 10-12h (read), 10h (write), 11h (set), 12h (clear)
6.1.4.10 USB Interrupt Status Register: Address = 13h (read only with auto clear)
6.1.4.11 USB Interrupt Status: Address = 14h (read only with auto clear)
Field Name Bit Default Description
HostDisconnect Fall 0 1b Generate an interrupt event notification when Hostdisconnect
changes from high to low. Applicable only in host mode.
VbusValid Fall 1 1b Generate an interrupt event notification when Vbusvalid changes
from high to low.
SessValid Fall 2 1b Generate an interrupt event notification when SessValid changes
from high to low.
SessEnd Fall 3 1b Generate an interrupt event notification when SessEnd changes
from high to low.
IdGnd Fall 4 1b Generate an interrupt event notification when IdGnd changes from
high to low.
Reserved 7:5 0h Driven low.
Field Name Bit Default Description
HostDisconnect 0 0b Current value of the UTMI+ Hostdisconnect output. Applicable
only in host mode.
VbusValid 1 0b Current value of the UTMI+ Vbusvalid output.
SessValid 2 0b Current value of the UTMI+ SessValid output.
SessEnd 3 0b Current value of the UTMI+ SessEnd output.
IdGnd 4 0b Current value of the UTMI+ IdGnd output.
Reserved 7:5 0h Driven low.
Field Name Bit Default Description
HostDisconnect Latch 0 0b Set to 1b by the PHY when an unmasked event occurs on
Hostdisconnect. Cleared when this register is read. Applicable
only in host mode.
VbusValid Latch 1 0b Set to 1b by the PHY when an unmasked event occurs on
VbusValid. Cleared when this register is read.
SessValid Latch 2 0b Set to 1b by the PHY when an unmasked event occurs on
SessValid. Cleared when this register is read.
SessEnd Latch 3 0b Set to 1b by the PHY when an unmasked event occurs on
SessEnd. Cleared when this register is read.
IdGnd Latch 4 0b Set to 1b by the PHY when an unmasked event occurs on IdGnd.
Cleared when this register is read.
Reserved 7:5 0h Driven low.
USB3300
DS00001783C-page 24 2014-2015 Microchip Technology Inc.
6.1.4.12 Debug Register: Address = 15h (read only)
6.1.4.13 Scratch Register: Address = 16-18h (read), 16h (write), 17h (set), 18h (clear)
6.1.4.14 Carkit Register Access
The Carkit registers are reserved for Microchip testing and should not be written to or read by the Link.
6.1.4.15 Extended Register Access
The extended registers are reserved for Microchip testing and should not be written to or read by the Link.
6.1.4.16 Vendor Register Access
The vendor specific registers are reserved for Microchip testing and should not be written to or read by the Link. The
vendor specific registers include the range from 30h to 3Fh.
6.1.5 ULPI REGISTER ACCESS
A command from the Link begins a ULPI transfer from the Link to the USB3300. Anytime the Link wants to write or read
a ULPI register, the Link will need to wait until DIR is low, and then send a Transmit Command Byte (TXD CMD) to the
PHY. The TXD CMD byte informs the PHY of the type of data being sent. The TXD CMD is followed by the a data transfer
to or from the PHY. Table 6-4, "ULPI TXD CMD Byte Encoding" gives the TXD command byte (TXD CMD) encoding for
the USB3300. The upper two bits of the TX CMD instruct the PHY as to what type of packet the Link is transmitting.
Field Name Bit Default Description
Linestate0 0 0b Contains the current value of Linestate[0].
Linestate1 1 0b Contains the current value of Linestate[1].
Reserved 7:2 000000b Driven low.
Field Name Bit Default Description
Scratch 7:0 00h Empty register byte for testing purposes. Software can read, write,
set, and clear this register and the PHY functionality will not be
affected.
TABLE 6-4: ULPI TXD CMD BYTE ENCODING
Command Name CMD Bits[7:6] CMD Bits[5:0] Command Description
Idle 00b 000000b ULPI Idle
Transmit 01b 000000b USB Transmit Packet with No Packet Identifier (NOPID)
00XXXXb USB Transmit Packet Identifier (PID) where DATA[3:0]
is equal to the 4-bit PID. P3P2P1P0 where P3 is the
MSB.
Register Write 10b XXXXXXb Immediate Register Write Command where
DATA[5:0] = 6-bit register address
Register Read 11b XXXXXXb Immediate Register Read Command where
DATA[5:0] = 6-bit register address
2014-2015 Microchip Technology Inc. DS00001783C-page 25
USB3300
6.1.5.1 ULPI Register Write
A ULPI register write operation is given in Figure 6-4. The TXD command with a register write DATA[7:6] = 10b is driven
by the Link at T0. The register address is encoded into DATA[5:0] of the TXD CMD byte.
To write to a register, the Link will wait until DIR is low, and at T0, drive the TXD CMD on the databus. At T2 the PHY
will drive NXT high. On the next rising clock edge, T3, the Link will write the register data. At T4 the PHY will accept the
register data and the Link will drive an Idle on the bus and drive STP high to signal the end of the data packet. Finally,
at T5, the PHY will latch the data into the register and drive NXT low. The Link will pull STP low.
NXT is used to control when the Link drives the register data on the bus. DIR is low throughout this transaction since
the PHY is receiving data from the Link. STP is used to end the transaction and data is registered after the de-assertion
of STP. After the write operation completes, the Link must drive a ULPI Idle (00h) on the data bus or the USB3300 may
decode the bus value as a ULPI command.
FIGURE 6-4: ULPI REGISTER WRITE
DIR
CLK
DATA[7:0]
STP
NXT
TXD CMD
(reg write)
Idle Reg Data[n] Idle
ULPI Register R e g Data [n -1 ] R e g Data [n]
T0 T1 T2 T3 T5T4 T6
USB3300
DS00001783C-page 26 2014-2015 Microchip Technology Inc.
6.1.5.2 ULPI Register Read
A ULPI register read operation is given in Figure 6-5. The Link drives a TXD CMD byte with DATA[7:6] = 11h for a reg-
ister read. DATA[5:0] of the ULPI TXD command bye contain the register address.
At T0, the Link will place the TXD CMD on the databus. At T2, the PHY will bring NXT high, signaling that the Link it is
ready to accept the data transfer. At T3, the PHY reads the TXD CMD, determines it is a register read, and asserts DIR
to gain control of the bus. The PHY will also de-assert NXT. At T4, the bus ownership has transferred back to the PHY
and the PHY drives the requested register onto the databus. At T5, the Link will read the databus and the PHY will drop
DIR low returning control of the bus back to the Link. After the turn around cycle, the Link must drive a ULPI Idle com-
mand at T6.
6.1.6 ULPI RXD CMD
The Link needs several more important states of information which were provided by the linestate[1:0], rxactive, rxvalid
and rxerror. When an implementing the OTG functions the Vbus and ID pin states must also be transferred into the Link.
ULPI defines a Receive Command Byte (RXD CMD) that contains this information. The Encoding of the RXD CMD byte
is given in the Table 6-5, "ULPI RX CMD Encoding".
Transfer of the RXD CMD byte occurs when in Synchronous Mode when the PHY has control of the bus. Transfers of
the RXD CMD occur after: a transmit cmd has issued STP, a linestate change when not transmitting, a USB receive, or
an interrupt event occurs.
In Figure 6-2, "ULPI Digital Block Diagram", the ULPI Protocol Block determines when to send an RXD CMD. When a
linestate change occurs the RXD CMD is sent immediately if the DIR output is low.
When a USB Receive is occurring RXD CMDs are sent when ever NXT = 0 and DIR = 1. When a USB Transmit occurs
the RXD CMDs are returned to the Link after the STP is asserted ending the Link to USB3300 transfer of the bytes to
be sent on the transmit.
To summarize a RXD CMD transfer occurs:
when DIR is low and a linestate change occurs.
when Vbus and/or ID comparators change state.
during a USB receive when NXT is low.
after STP is asserted during a USB transmit cmd.
FIGURE 6-5: ULPI REGISTER READ
2014-2015 Microchip Technology Inc. DS00001783C-page 27
USB3300
Note 1: An ‘X’ is a do not care and can be either a logic 0 or 1.
2: The value of VbusValid is defined in Table 6-10, "External Vbus Indicator Logic".
6.1.7 USB3300 TRANSMITTER
The USB3300 ULPI transmitter fully supports HS, FS, and LS transmit operations. Figure 6-2, "ULPI Digital Block Dia-
gram" shows the high speed, full speed, and low speed transmitter block controlled by ULPI Protocol Block. Encoding
of the USB packet follows the bit-stuffing and NRZI outlined in the USB 2.0 specification. Many of these functions are
re-used between the high speed and full/low speed transmitters. When using the USB3300, Table 6-8, "DP/DM Termi-
nation vs. Signaling Mode" should always be used as a guideline on how to configure for various modes of operation.
The transmitter decodes the inputs of Xcvrselect, Termselect, opmodes, DpPulldown and DmPulldown to determine
what operation is expected. Users must strictly adhere to the modes of operation given in Table 6-8.
Several important functions for a device and host are designed in the transmitter blocks.
The USB3300 transmitter will transmit a 32-bit long high speed synch before every high speed packet. In full and low
speed modes a 8-bit synch is transmitted.
When the device or host needs to chirp for high speed port negotiation, the Opmode Bits=10 will turn off the bit-stuffing
and NRZI encoding in the transmitter. At the end of a chirp, the USB3300 Opmode register bits should be changed only
after the RXCMD linestate encoding indicates that the transmitter has completed transmitting. Should the opmode be
switched to normal bit-stuffing and NRZI encoding before the transmit pipeline is empty, the remaining data in the pipe-
line may be transmitted in an bit-stuff encoding format.
Please refer to the ULPI specification for a detailed discussion of USB reset and HS chirp.
6.1.7.1 High Speed Long EOP
When operating as a Hi-Speed host, the USB3300 will automatically generate a 40 bit long End of Packet (EOP) after
a SOF PID (A5h). The USB3300 determines when to send the 40-bit long EOP by decoding the ULPI TXD CMD bits
[3:0] for the SOF. The 40-bit long EOP is only transmitted when the DpPulldown and DmPulldown bits are asserted. The
Hi-Speed 40-bit long EOP is used to detect a disconnect in high speed mode.
In device mode, the USB3300 will not send a long EOP after a SOF PID.
TABLE 6-5: ULPI RX CMD ENCODING
Data [7:0] Name Description and Value
[1:0] Linestate UTMI Linestate Signals
DATA[1] = Linestate[1]
DATA[0] = Linestate[0]
[3:2] Encoded
Vbus State ENCODED VBUS VOLTAGE STATES
VALUE VBUS VOLTAGE SESSEND SESSVLD VBUSVLD2
00 VVBUS < VSESS_END 100
01 VSESS_END < VVBUS <
VSESS_VLD
000
10 VSESS_VLD < VVBUS <
VVBUS_VLD
X1 0
11 VVBUS_VLD < VVBUS XX 1
[5:4] Rx Event
Encoding ENCODED UTMI EVENT SIGNALS
VALUE RXACTIVE RXERROR HOSTDISCONNECT
00 0 0 0
01 1 0 0
11 1 1 0
10 X X 1
[6] State of ID
pin Set to the logic state of the ID pin. A logic low indicates an A device. A logic high
indicates a B device.
[7] Reserved Always
USB3300
DS00001783C-page 28 2014-2015 Microchip Technology Inc.
6.1.7.2 Low Speed Keep-Alive
Low speed keep alive is supported by the USB3300. When in Low speed (10b), the USB3300 will send out two Low
speed bit times of SE0 when a SOF PID is received.
6.1.7.3 UTMI+ Level 3
Pre-amble is supported for UTMI+ Level 3 compatibility. When Xcvrselect is set to (11b) in host mode, (dpPulldown and
dmPulldown both asserted) the USB3300 will pre-pend a full speed pre-amble before the low speed packet. Full speed
rise and fall times are used in this mode. The pre-amble consists of the following: Full speed sync, the encoded pre-PID
(C3h) and then full speed idle (DP=1 and DM = 0). A low speed packet follows with a sync, data and a LS EOP.
6.1.7.4 Host Resume K
Resume K generation is supported by the USB3300. When the USB3300 exits the suspended low power state, the
USB3300, when operating as a host, will transmit a K on DP/DM. The transmitters will end the K with SE0 for two Low
Speed bit times. If the USB3300 was operating in high speed mode before the suspend, the host must change to high
speed mode before the SE0 ends. SE0 is two low speed bit times which is about 1.2 us.
The ULPI specification has an explicit discussion of the resume sequence and the order of operations required.
In device mode, the resume K will not append a SE0 but release the DP/ DM lines to allow the pull up to return the bus
to the correct idle state, depending upon the operational mode of the USB3300. Refer to Table 6-8, "DP/DM Termination
vs. Signaling Mode".
6.1.7.5 No SYNC and EOP Generation (Opmode 11) (optional)
UTMI+ defines an opmode 11 where no sync and EOP generation occurs in Hi-Speed operation. This is an option to
the ULPI specification and not implemented in the USB3300.
6.1.7.6 Typical USB Transmit with ULPI
Figure 6-6, "ULPI Transmit" shows a typical USB transmit sequence. A transmit sequence starts by the Link sending a
TXD CMD where DATA[7:6] = 01b, DATA[5:4] = 00b, and Data[3:0] = PID. The TX CMD with the PID is followed by
transmit data. Form the time the data is clocked into the transmitter it will appear at DP and DM 11 high speed bit times
later. This time is the HS_TX_START_DELAY.
During transmit the PHY will use NXT to control the rate of data flow into the PHY. If the USB3300 pipeline is full or bit-
stuffing causes the data pipeline to overfill NXT is de-asserted and the Link will hold the value on Data until NXT is
asserted. The USB Transmit ends when the Link asserts STP while NXT is asserted. (Note that the Link cannot assert
STP with NXT de-asserted since the USB3300 is expecting to fetch another byte from the Link in this state).
FIGURE 6-6: ULPI TRANSMIT
DATA[7: 0]
DP/ DM
DIR
CLK
STP
NXT
TXD CMD
(U S B tx )
Idle D0 D2 D3 IDLE
SE0 !SQUELCH SE0
Turn
Around Turn
Around
RXD
CMD
D1
2014-2015 Microchip Technology Inc. DS00001783C-page 29
USB3300
Once, the USB3300 completes transmitting, the DP/DM lines return to idle and an RXD CMD is returned to the Link so
the inter-packet timers may be updated by linestate.
In the case of Full Speed or Low Speed, once STP is asserted each FS/LS bit transition will generate a RXD CMD since
the bit times are relatively slow.
6.1.8 USB3300 RECEIVER
The USB3300 ULPI receiver fully supports HS, FS, and LS transmit operations. In all three modes the receiver detects
the start of packet and synchronizes to the incoming data packet. In the ULPI protocol, a received packet has the priority
and will immediately follow register reads and RXD CMD transfers. Figure 6-7, "ULPI Receive" shows a basic USB
packet received by the USB3300 over the ULPI interface.
In Figure 6-7, "ULPI Receive" the PHY asserts DIR to take control of the data bus from the Link. The assertion of DIR
and NXT in the same cycle contains additional information that Rxactive has been asserted. When NXT is de-asserted
and DIR is asserted, the RXD CMD data is transferred to the Link. After the last byte of the USB receive packet is trans-
ferred to the PHY, the linestate will return to idle.
The ULPI full speed receiver operates according to the UTMI/ULPI specification. In the full speed case, the NXT signal
will assert only when the Data bus has a valid received data byte. When NXT is low with DIR high, the RXD CMD is
driven on the data bus.
In full speed, the USB3300 will not issue a Rxactive de-assertion in the RXD CMD until the DP/DM linestate transition
to idle. This prevents the Link from violating the two full speed bit times minimum turn around time.
6.1.8.1 Disconnect Detection
A High Speed host must detect a disconnect by sampling the transmitter outputs during the long EOP transmitted during
a SOF packet. The USB3300 only looks for a high speed disconnect during the long EOP where the period is long
enough for the disconnect reflection to return to the host PHY. When a high speed disconnect occurs the USB3300 will
return a RXD CMD and set the host disconnect bit in the ULPI interrupt status register (address 13h).
When in FS or LS modes, the Link is expected to handle all disconnect detection.
6.1.9 LOW POWER MODE
Low Power Mode is a power down state to save current when the USB session is suspended. The Link controls when
the PHY is placed into or out of Low Power Mode. In Low Power Mode all of the circuits are powered down except the
interface pins, full speed receiver, VBUS comparators, and ID comparator.
FIGURE 6-7: ULPI RECEIVE
DIR
CLK
DATA[7:0]
STP
NXT
Rxd
Cmd
Idle Turn
around PID D1 Rxd
Cmd D2 Turn
around
USB3300
DS00001783C-page 30 2014-2015 Microchip Technology Inc.
6.1.9.1 Entering Low Power/Suspend Mode
To enter Low Power Mode, the Link will write a 0 or clear the SuspendM bit in the Function Control Register. Once this
write is complete, the PHY will assert DIR high and after five rising edges of CLKOUT, drive the clock low. Once the
clock is stopped, the PHY will enter a low power state to conserve current.
While in Low Power Mode, the Data interface is redefined so that the Link can monitor Linestate and the Vbus voltage.
In Low Power Mode DATA[3:0] are redefined as shown in Table 6-6, "Interface Signal Mapping During Low Power
Mode". Linestate[1:0] is the combinational output of the full speed receivers. The “int” or interrupt signal indicates an
unmasked interrupt has occurred. When an unmasked interrupt or linestate change has occurred, the Link is notified
and can determine if it should wake-up the PHY.
An unmasked interrupt can be caused by the following comparators changing state, VbusVld, SessVld, SessEnd, and
IdGnd. If any of these signals change state during Low Power Mode and either their rising or falling edge interrupt is
enabled, DATA[3] will assert. During Low Power Mode, the VbusVld and SessEnd comparators can have their interrupts
masked to lower the suspend current. Refer to Section 6.1.9.4, "Minimizing Current in Low Power Mode".
While in Low Power Mode, the Data bus is driven asynchronously because all of the PHY clocks are stopped during
Low Power Mode.
FIGURE 6-8: ENTERING LOW POWER MODE
TABLE 6-6: INTERFACE SIGNAL MAPPING DURING LOW POWER MODE
Signal Maps To Direction Description
linestate[0] DATA[0] OUT Combinatorial linestate[0] driven directly by FS analog receiver.
linestate[1] DATA[1] OUT Combinatorial linestate[1] driven directly by FS analog receiver.
reserved DATA[2] OUT Driven Low
int DATA[3] OUT Active high interrupt indication. Must be asserted whenever any
unmasked interrupt occurs.
reserved DATA[7:4] OUT Driven Low
DIR
CLK
DATA[7:0]
STP
NXT
TXD CM D
(reg write)
Idle Reg Data[n] Idle
T0 T1 T2 T3 T5T4 T6 T10
Turn
Around Low Power Mode
SUSPENDM
(ULPI Register Bit)
...
2014-2015 Microchip Technology Inc. DS00001783C-page 31
USB3300
6.1.9.2 Exiting Low Power Mode
To exit Low Power Mode, the Link will assert STP. Upon the assertion of STP, the USB3300 will begin its start-up pro-
cedure. After the PHY start-up is complete, the PHY will start the clock on CLKOUT and de-assert DIR. Once DIR has
been de-asserted, the Link can de-assert STP when ready and start operating in Synchronous Mode. The PHY will auto-
matically set the SuspendM bit to a 1 in the Function Control register.
The time from T0 to T1 is given in Table 5-2, “Electrical Characteristics: CLKOUT Start-Up,” on page 12.
Should the Link de-assert STP before DIR is de-asserted, the USB3300 will detect this as a false resume request and
return to Low Power Mode. This is detailed in section 3.9.4 of the ULPI 1.1 specification.
6.1.9.3 Interface Protection
ULPI protocol assumes that both the Link and PHY will keep the ULPI data bus driven by either the Link when DIR is
low or the PHY when DIR is high. The only exception is when DIR has changed state and a turn around cycle occurs
for 1 clock period.
In the design of a USB system, there can be cases where the Link may not be driving the ULPI bus to a known state
while DIR is low. Two examples where this can happen is because of a slow Link start-up or a hardware reset.
Start up Protection
Upon start-up, when the PHY de-asserts DIR, the Link must be ready to receive commands and drive Idle on the data
bus. If the Link is not ready to receive commands or drive Idle, it must assert STP before DIR is de-asserted. The Link
can then de-assert STP when it has completed its start-up. If the Link doesn’t assert STP before it can receive com-
mands, the PHY may interpret the databus state as a TX CMD and transmit invalid data onto the USB bus, or make
invalid register writes.
A Link should be designed to have the default POR state of the STP output high and the data bus tri-stated. The
USB3300 has weak pull-downs on the DATA bus to prevent these inputs from floating when not driven.
In some cases, a Link may be software configured and not have control of its STP pin until after the PHY has started.
In this case, the USB3300 has an internal pull-up on the STP input pad which will pull STP high while the Link’s STP
output is tri-stated. The STP pull-up resistor is enabled on POR and can be disabled by setting the InterfaceProtectDis-
able bit 7 of the Interface Control register.
The STP pull-up resistor will pull-up the Link’s STP input high until the Link configures and drives STP high. Once the
Link completes its start-up, STP can be synchronously driven low.
FIGURE 6-9: EXITIN G LOW POW ER MODE
DIR
CLK
DATA[7:0]
STP
NXT
TURN
AROUND
LOW
POWER MODE DATA BUS IGNORED (SLOW LINK)
IDLE (FAST LINK ) IDLE
T0 T1 T2 T3 T5T4
Slow Link Drives Bus
Id le an d STP low
Fast Link Drives B us
Id le a nd STP low
...
N o te : Not to S c a le
USB3300
DS00001783C-page 32 2014-2015 Microchip Technology Inc.
A Link design which drives STP high during POR can disable the pull-up resistor on STP by setting InterfaceProtect-
Disable bit to 1. A motivation for this is to reduce the suspend current. In Low Power Mode, STP is held low, which would
draw current through the pull-up resistor on STP.
Warm Reset
Designers should also consider the case of a warm restart of a Link with a PHY in Low Power Mode. Once the PHY
enters Low Power Mode, DIR is asserted and the clock is stopped. The USB3300 looks for STP to be asserted to re-
start the clock and then resume normal synchronous operation.
Should the USB3300 be suspended in Low Power Mode, and the Link receives a hardware reset, provision is made to
allow the PHY to recover from Low Power Mode and start its clock. If the Link asserts STP on reset, the PHY will exit
Low Power Mode and start its clock.
If the Link does not assert STP on reset the interface protection pull-up can be used. When the Link is reset, its STP
output will tri-state and the pull-up resistor will pull STP high, signaling the PHY to restart its clock.
6.1.9.4 Minimizing Current in Low Power Mode
In order to minimize the suspend current in Low Power Mode, the OTG comparators can be disabled to reduce suspend
current. During suspend, the VbusVld and SessEnd comparators are not needed and can be disabled using the USB
Interrupt Enable Rise and USB Interrupt Enable Fall registers. By disabling the interrupt in BOTH the rise and fall reg-
isters, the SessEnd and VbusVld comparators are turned off. When exiting suspend, the Link should immediately re-
enable the comparators if host or OTG functionality is needed.
In addition to disabling the OTG comparators in suspend, the Link may choose to disable the Interface Protect Circuit.
By setting the Interface Control, bit 7, InterfaceProtectDisable high, the Link can disable the pull-up resistor on STP.
6.1.10 FULL SPEED/LOW SPEED SERIAL MODES
The USB3300 includes two serial modes to support legacy Links which use either the 3pin or 6pin serial format. To enter
either serial mode, the Link will need to write a 1 to the 6-pin F sLsSerialMode or the 3-pin FsLsSerialMode bit in the
Interface control register. The 6-pin Serial Mode is provided for legacy link designs and is not recommended for new
designs.
The serial modes are entered in the same manner as the entry into Low Power Mode. The Link writes the Interface
Control register bit for the specific serial mode. The USB3300 will assert DIR and shut off the clock after at least five
clock cycles. Then the data bus goes to the format of the serial mode selected.
By default, the PHY will shut off the 60MHz clock to conserve power. Should the Link need the 60Mhz clock to continue
during the serial mode of operation, the ClockSuspendM bit[3] of the Interface Control Register should be set before
entering a serial mode. If set, the 60 Mhz clock will be present during serial modes.
In serial mode, interrupts are possible from unmasked sources. The state of each interrupt source is sampled prior to
the assertion of DIR and this is compared against the asynchronous level from interrupt source.
Exiting the serial modes is the same as exiting Low Power Mode. The Link must assert STP to signal the PHY to exit
serial mode. Then the PHY can accept a command, DIR is de-asserted and the PHY will wait until the Link de-asserts
STP to resume synchronous ULPI operation.
6.1.10.1 3pin FS/LS Serial Mode
Three pin serial mode utilizes the data bus pins for the serial functions shown in Table 6-7, "Pin Definitions in 3-pin Serial
Mode".
TABLE 6-7: PIN DEFINITIONS IN 3-PIN SERIAL MODE
Signal Connected To Direction Description
tx_enable DATA[0] IN Active High transmit enable
data DATA[1] I/O Tx differential data on DP/DM when tx_enable is high
RX differential data from DP/DM when tx_enable is low
se0 DATA[2] I/O Tx SE0 on DP/DM when tx_enable is high
RX SE0 from DP/DM when tx_enable is low
interrupt DATA[3] OUT Asserted when any unmasked interrupt occurs. Active high
2014-2015 Microchip Technology Inc. DS00001783C-page 33
USB3300
6.1.11 RESET PIN
The reset input of the USB3300 may be asynchronously asserted and de-asserted so long as it is held in the asserted
state continuously for a duration greater than one clkout clock cycle. The reset input may be asserted when the
USB3300 clkout signal is not active (i.e. in the suspend state caused by asserting the SuspendM bit) but reset must only
be de-asserted when the USB3300 clkout signal is active and the reset has been held asserted for a duration greater
than one clkout clock cycle. No other PHY digital input signals may change state for two clkout clock cycles after the de-
assertion of the reset signal.
6.2 Hi-Speed USB Transceiver
The Microchip Hi-Speed USB 2.0 Transceiver consists of four blocks in the lower right corner of Figure 6-1, "Simplified
USB3300 Architecture". These four blocks are labeled HS XCVR, FS/LS XCVR, Resistors, and Bias Gen.
6.2.1 HIGH SPEED AND FULL SPEED TRANSCEIVERS
The USB3300 transceiver meets all requirements in the USB 2.0 specification.
The receivers connect directly to the USB cable. This block contains a separate differential receiver for HS and FS
mode. Depending on the mode, the selected receiver provides the serial data stream through the multiplexer to the RX
Logic block. The FS mode section of the FS/HS RX block also consists of a single-ended receiver on each of the data
lines to determine the correct FS linestate. For HS mode support, the FS/HS RX block contains a squelch circuit to
insure that noise is never interpreted as data.
The transmitters connect directly to the USB cable. The block contains a separate differential FS and HS transmitter
which receive encoded, bit stuffed, serialized data from the TX Logic block and transmit it onto the USB cable.
6.2.2 TERMINATION RESISTORS
The USB3300 transceiver fully integrates all of the USB termination resistors. The USB3300 includes 1.5k pull-up
resistors on both DP and DM and a 15k pull-down resistor on both DP and DM. The 45 high speed termination resis-
tors are also integrated. These resistors require no tuning or trimming by the Link. The state of the resistors is deter-
mined by the operating mode of the PHY. The possible valid resistor combinations are shown in Table 6-8, "DP/DM
Termination vs. Signaling Mode". Operation is guaranteed in the configurations given in the table below.
RPU_DP_EN activates the 1.5k DP pull-up resistor
RPU_DM_EN activates the 1.5k DM pull-up resistor
RPD_DP_EN activates the 15k DP pull-down resistor
RPD_DM_EN activates the 15k DM pull-down resistor
HSTERM_EN activates the 45 DP and DM high speed termination resistors
TABLE 6-8: DP/DM TERMINATION VS. SIGNALING MODE
Signaling Mode
Register Settings Resistor Settings
XCVRSELECT[1:0]
TERMSELECT
OPMODE[1:0]
DPPULLDOWN
DMPULLDOWN
RPU_DP_EN
RPU_DM_EN
RPD_DP_EN
RPD_DM_EN
HSTERM_EN
General Settings
Tri-State Drivers XXbXb01bXbXb0b0b0b0b0b
Power-up or Vbus < VSESSEND 01b0b00b1b1b0b0b1b1b0b
Host Settings
Host Chirp 00b0b10b1b1b0b0b1b1b1b
Host Hi-Speed 00b0b00b1b1b0b0b1b1b1b
Host Full Speed X1b1b00b1b1b0b0b1b1b0b
Host HS/FS Suspend 01b1b00b1b1b0b0b1b1b0b
Host HS/FS Resume 01b1b10b1b1b0b0b1b1b0b
USB3300
DS00001783C-page 34 2014-2015 Microchip Technology Inc.
6.2.3 BIAS GENERATOR
This block consists of an internal bandgap reference circuit used for generating the driver current and the biasing of the
analog circuits. This block requires an external 12K, 1% tolerance, external reference resistor connected from RBIAS
to ground.
6.3 Crystal Oscillator and PLL
The USB3300 uses an internal crystal driver and PLL sub-system to provide a clean 480MHz reference clock that is
used by the PHY during both transmit and receive. The USB3300 requires a clean 24MHz crystal or clock as a frequency
reference. If the 24MHz reference is noisy or off frequency the PHY may not operate correctly.
The USB3300 can use either a crystal or an external clock oscillator for the 24MHz reference. The crystal is connected
to the XI and XO pins as shown in the application diagram, Figure 7-1. If a clock oscillator is used the clock should be
connected to the XI input and the XO pin left floating. When a external clock is used the XI pin is designed to be driven
with a 0 to 3.3 volt signal. When using an external clock the user needs to take care to ensure the external clock source
is clean enough to not corrupt the high speed eye performance.
Once the 480MHz PLL has locked to the correct frequency it will drive the CLKOUT pin with a 60MHz clock. The
USB3300 is guaranteed to start the clock within the time specified in Table 5-2, "Electrical Characteristics: CLKOUT
Start-Up". The USB3300 does not support using an external 60MHz clock input.
Host low Speed 10b1b00b1b1b0b0b1b1b0b
Host LS Suspend 10b 1b 00b 1b 1b 0b 0b 1b 1b 0b
Host LS Resume 10b1b10b1b1b0b0b1b1b0b
Host Test J/Test_K 00b0b10b1b1b0b0b1b1b1b
Peripheral Settings
Peripheral Chirp 00b 1b 10b 0b 0b 1b 0b 0b 0b 0b
Peripheral HS 00b 0b 00b 0b 0b 0b 0b 0b 0b 1b
Peripheral FS 01b 1b 00b 0b 0b 1b 0b 0b 0b 0b
Peripheral HS/FS Suspend 01b 1b 00b 0b 0b 1b 0b 0b 0b 0b
Peripheral HS/FS Resume 01b 1b 10b 0b 0b 1b 0b 0b 0b 0b
Peripheral LS 10b 1b 00b 0b 0b 0b 1b 0b 0b 0b
Peripheral LS Suspend 10b 1b 00b 0b 0b 0b 1b 0b 0b 0b
Peripheral LS Resume 10b 1b 10b 0b 0b 0b 1b 0b 0b 0b
Peripheral Test J/Test K 00b 0b 10b 0b 0b 0b 0b 0b 0b 1b
OTG device, Peripheral Chirp 00b 1b 10b 0b 1b 1b 0b 0b 1b 0b
OTG device, Peripheral HS 00b 0b 00b 0b 1b 0b 0b 0b 1b 1b
OTG device, Peripheral FS 01b 1b 00b 0b 1b 1b 0b 0b 1b 0b
OTG device, Peripheral HS/FS Suspend 01b 1b 00b 0b 1b 1b 0b 0b 1b 0b
OTG device, Peripheral HS/FS Resume 01b 1b 10b 0b 1b 1b 0b 0b 1b 0b
OTG device, Peripheral Test J/Test K 00b 0b 10b 0b 1b 0b 0b 0b 1b 1b
Note: This is the same as Table 40, Section 4.4 of the ULPI 1.1 specification.
TABLE 6-8: DP/DM TERMINATION VS. SIGNALING MODE (CONTINUED)
Signaling Mode
Register Settings Resistor Settings
XCVRSELECT[1:0]
TERMSELECT
OPMODE[1:0]
DPPULLDOWN
DMPULLDOWN
RPU_DP_EN
RPU_DM_EN
RPD_DP_EN
RPD_DM_EN
HSTERM_EN
2014-2015 Microchip Technology Inc. DS00001783C-page 35
USB3300
For Host Applications the USB3300 implements the ULPI AutoResume bit in the Interface Control register. The default
AutoResume state is 0 and this bit should be enabled for Host applications. For more details please see sections 7.1.77
and 7.9 of the USB specification.
6.4 Internal Regulators and POR
The USB3300 includes an integrated set of built in power management functions, including a POR generator. Internal
regulators enable the USB3300 to be powered from a single 3.3 volt power supply, thereby reducing the bill of materials
and simplifying product design.
6.4.1 INTERNAL REGULATORS
The USB3300 has two internal regulators that create two 1.8V outputs (labeled VDD1.8 and VDDA1.8) from the 3.3volt
power supply input (VDD3.3). Each regulator requires an external 4.7uF +/-20% low ESR bypass capacitor to ensure
stability. X5R or X7R ceramic capacitors are recommended since they exhibit an ESR lower that 0.1ohm at frequencies
greater than 10kHz.
6.4.2 POWER ON RESET (POR)
The USB3300 provides an internal POR circuit that generates a reset pulse once the PHY supplies are stable. This reset
will set all of the ULPI registers to their default values and start the PHY in normal operation. Cycling the 3.3 volt power
supply is the only method for the PHY to reset the ULPI registers to their default states. The Link can write the registers
to their default states at any time in normal operation.
The RESET pin has the same functionality as the RESET register in the Function Control Register.
6.5 USB On-The-Go (OTG) Module
The USB3300 provides support for USB OTG. OTG allows the USB3300 to be dynamically configured as a host or a
device depending on the type of cable inserted into the Mini-AB connector. When the Mini-A plug of a cable is inserted
into the Mini-AB connector, the USB device becomes the A-device. When a Mini-B plug is inserted, the device becomes
the B-device. The OTG A-device behaves similar to a Host while the B-device behaves similar to a peripheral. The dif-
ferences are covered in the OTG supplement.
The OTG Module meets all the requirements in the “On-The-Go Supplement to the USB 2.0 Specification”. In applica-
tions where only Host or Device is required, the OTG Module is unused.
Note: The specific capacitor recommendations for each pin are detailed in Table 3-1, "USB3300 Pin Definitions
32-Pin QFN Package", and shown in FIGURE 7-1: USB3300 Application Diagram (Peripheral) on page 40.
The USB3300 regulators are designed to generate a 1.8 volt supply for the USB3300 only. Using the reg-
ulators to provide current for other circuits is not recommended and Microchip does not guarantee USB
performance or regulator stability.
USB3300
DS00001783C-page 36 2014-2015 Microchip Technology Inc.
The OTG Module can be broken into 4 main blocks; ID Detection, VBUS Control, Driving External Vbus, and External
Vbus Detection. Each of these blocks is covered in the sections below.
6.5.1 ID DETECTION
The USB3300 provides an ID pin to determine the type of USB cable connected. When the Mini-A Plug of a USB cable
is inserted into the Mini-AB connector, the ID pin is shorted to ground. When the Mini-B Plug is inserted into the Mini-
AB connector, the ID pin is allowed to float.
.
The USB3300 provides an integrated pull-up resistor and a comparator to detect if the ID pin is floating or grounded. An
integrated pull-up resistor is provided to pull the ID pin high to VDD3.3 when a Mini-B plug is inserted and the cable is
floating. When a Mini-A plug is connected, the pull-up resistor will be overpowered and the ID pin will be brought to
ground. To save current when a Mini-A Plug is inserted, the ID pull-up resistor can be disabled by clearing the IdPullUp
FIGURE 6-10: USB3300 ON-THE-GO MODULE
TABLE 6-9: IDGND VS. USB CABLE TYPE
USB Plug OTG Role ID Voltage IDGND
AHOST0 0
B PERIPHERAL 3.3 1
EXTVBUS
CPEN
R=75K
R>=656 R>=281
OTG Module
VBUS
ID
VDD33
RXCMD VbusValid
IndicatorComplement
[UseExternalVbusindicator, IndicatorPa ssThru]
[0, X]
VbusValid
SessValid
SessEnd
IdPullup
DischrgVbus
DrvVbus
DrvVbusExternal
IdGnd
ChrgVbus
0.5V
1.4V
4.575V
0.6V
R=100K
[1, 0]
[1, 1]
R>1M
2014-2015 Microchip Technology Inc. DS00001783C-page 37
USB3300
bit in the OTG Control register. To prevent the ID pin from floating to a random value, a weak pull-up resistor is provided
at all times. The circuits related to the ID comparator are shown in Figure 6-10, "USB3300 On-the-Go Module" and their
related parameters are shown in Table 5-6, "OTG Electrical Characteristics".
The status of IdGnd can be read by reading the ULPI USB Interrupt Status register, bit 4. It can also be set to generate
an interrupt, in host mode, when IdGnd changes with the ULPI Interrupt Enable registers.
6.5.2 VBUS CONTROL
The USB3300 includes all of the Vbus comparators required for OTG. The VbusVld, SessVld, and SessEnd compara-
tors are fully integrated into the USB3300. These comparators are used to ensure the Vbus voltage is the correct value
for proper USB operation.
The VbusVld comparator is used by the Link, when configured as an A device, to ensure that the Vbus voltage on the
cable is valid. The SessVld comparator is used by the Link when configured as both an A or B device to indicate a ses-
sion is requested or valid. Finally the SessEnd comparator is used by the B-device to indicate a USB session has ended.
Also included in the VBUS Control block are the resistors used for Vbus pulsing in SRP. The resistors used for VBUS
pulsing include a pull-down to ground and a pull-up to VDD3.3.
6.5.2.1 SessEnd Comparator
The SessEnd comparator is designed to trip when Vbus is less than 0.5 volts. When Vbus goes below 0.5 volts the ses-
sion is considered to be ended and SessEnd will transition from 0 to 1. The SessEnd compatator can be disabled by
clearing this bit in both the rising and falling interrupt enable registers. When disabled the SessEnd bit in the interrupt
status register will read 0. The SessEnd comparator trip points are detailed in Table 5-6.
6.5.2.2 SessVld Comparator
The SessVld comparator is used when the PHY is configured as both an A and B device. When configured as an A
device, the SessVld is used to detect Session Request protocol (SRP). When configured as a B device, SessVld is used
to detect the presence of Vbus. The SessVld interrupts can be disabled by clearing this bit in both the rising and falling
interrupt enable registers. When the interrupts are disabled, the SessVld comparator is not disabled and its state can
be read in the interrupt status register. The SessVld comparator trip point is detailed in Table 5-6.
6.5.2.3 VbusVld Comparator
The final Vbus comparator is the VbusVld comparator. This comparator is only used when configured as an A-device.
In the OTG protocol the A-device is responsible to ensure that the Vbus voltage is within a certain range. The VbusVld
comparator can be disabled by clearing both the rising and falling edge interrupts. When disabled a read of bit 1, in the
Interrupt Status Register will return a 0. The VbusVld comparator trip points are detailed in Table 5-6.
When the A-device is able to provide 8-100mA it must ensure Vbus doesn’t go below 4.4 volts. If the A-device can pro-
vide 100-500mA on Vbus it must ensure that Vbus does not go below 4.75 volts.
The internal Vbus comparator is designed to ensure that Vbus remains above 4.4 volts. If the design is required to sup-
ply over 100mA the USB3300 provides an input for a more accurate Vbus comparator or fault (over current) detection
described in Section 6.5.4, "External Vbus Indicator".
6.5.2.4 Vbus Pull-up and Pull-down Resistors
In addition to the internal Vbus comparators the USB3300 also includes the integrated Vbus pull-up and pull-down resis-
tors used for Vbus Pulsing. To discharge the Vbus voltage, so that a Session Request can begin, the USB3300 provides
a pull-down resistor from Vbus to Ground. This resistor is controlled by the DischargeVbus bit 3 of the OTG Control
register, defined in the ULPI specifications. The pull-up resistor is connected between Vbus and VDD3.3. This resistor
is used to pull Vbus above 2.1 volts so that the A-Device knows that a USB session has been requested. The state of
the pull-up resistor is controlled by the bit 4 ChargeVbus of the OTG Control register, defined in the ULPI specifications.
The Pull-Up and Pull-Down resistor values are detailed in Table 5-6.
Note: The OTG Supplement specifies a voltage range for A-Device Session Valid and B-Device Session Valid
comparator. The USB3300 PHY combines the two comparators into one and uses the narrower threshold
range.
USB3300
DS00001783C-page 38 2014-2015 Microchip Technology Inc.
6.5.2.5 Vbus Input Impedance
The OTG Supplement requires an A-Device that supports Session request protocol to have an input impedance less
than 100kohm and greater the 40kohm to ground. In addition, if configured as a B-Device, the PHY cannot draw more
then 150uA from Vbus. The USB3300 provides a 75k nominal resistance to ground which meets the above require-
ments, see Table 5-6.
6.5.3 DRIVING EXTERNAL VBUS
When a system is operating as a host, it is required to source 5 volts on VBUS. The USB3300 fully supports VBUS
power control using external devices. The USB3300 provides an active high control signal, CPEN, which is dedicated
to controlling the Vbus supply when configured as an A-Device. The USB3300 also supports external Vbus fault detec-
tion detailed in Section 6.5.4.
CPEN is asserted when the ULPI OTG Control register bit 5 DrvVbus or bit 6, DrvVbusExternal is set high. To be com-
patible with Link designs that support both internal and external Vbus supplies the DrvVbus and DrvVbusExternal bits
in the OTG Control Register are or’d together. This enables the Link to set either bit to access the external Vbus enable
(CPEN.) This logic is shown in Figure 6-10, "USB3300 On-the-Go Module". DrvVbus and DrvVbusExternal are set to 0
on POR.
6.5.4 EXTERNAL VBUS INDICATOR
The USB3300 has fully implemented the External Vbus detection described in the ULPI 1.1 specification. The block dia-
gram of the External Vbus detection is shown in Figure 6-10 and in Table 6-10.
Note 6-1 Microchip does not recommend using the ExternalVbus signal qualified with the internal VbusVld
comparator.
Note 6-2 A peripheral should not use VbusVld to begin operation. The peripheral should use SessVld because
the internal VbusVld threshold can be above the Vbus voltage required for USB peripheral operation.
A host PHY may use an active high or low fault by setting the IndicatorComplement bit [5] in the Interface Control reg-
ister. Also this implementation supports the IndicatorPassThru bit [6] in the Interface Control register, which allows a
choice of having the External Vbus input qualified (and’ed) with the external vbus comparator output. To use the External
Vbus Input the UseExternalVbusIndicator bit [7] must be set in the OTG control register. The default is not to use this
input.
The EXTVBUS pin has a built in pull down resistor that is controlled by the UseExternalVbusIndicator bit [7] of the OTG
control register. When UseExternalVbusIndicator is set to 0 (default) the pull down resistor is activated to prevent the
pin from floating when it is unused. When UseExternalVbusIndicator is set to 1 the pull down resistor is disconnected.
TABLE 6-10: EXTERNAL VBUS INDICATOR LOGIC
Typical
Application Use Exter n al
VBus Indicator Indicator Pass
Thru Indicator
Complement RXCMD Vbus Valid
Encoding Sour ce
OTG Device 0 X X Internal VbusVld comparator (Default)
1 1 0 External active high VbusVld signal
1 1 1 External active low VbusVld signal
1 0 0 External active high power fault signal
qualified with internal VbusVld comparator.
(Note 6-1)
1 0 1 External active low power fault signal
qualified with internal VbusVld comparator.
(Note 6-1)
Standard Host 1 1 0 External active high power fault signal
1 1 1 External active low power fault signal
Standard
Peripheral 0 X X Internal VbusVld comparator. This should
not be used by the Link. (Note 6-2)
2014-2015 Microchip Technology Inc. DS00001783C-page 39
USB3300
7.0 APPLICATION NOTES
The USB3300 requires few external components as shown in the application diagrams. In some applications, the power
supplied on the VBUS and GND pins of the USB connector is used as the source of system power. The USB2.0 standard
restricts the voltage at the VBUS pin to a maximum value of 5.25V. In some applications, it may be required to provide
protection to the USB3300 VBUS pin if the VBUS voltage exceeds the USB2.0 specifications.
One method of protecting the VBUS pin from excessive voltage (transients) is to place a resistor (RVBUS) in series as
shown in Figure 7-1, "USB3300 Application Diagram (Peripheral)" and Figure 7-2, "USB3300 Application Diagram
(Host or OTG)". The resistor provides protection against transients that exceed the value of VVBUS provided in Table 4-
2, "Recommended Operating Conditions". When RVBUS is installed, the transient must not be allowed to exceed the
value of VVBUS for longer than 500 s.
To protect the VBUS pin against a steady state voltage on the USB connector that exceeds the value of VVBUS provided
in Table 4-2, an Over Voltage Protection (OVP) component can be used as shown in Figure 7-3, "USB3300 Application
Diagram (Peripheral with Over Voltage Protection)".
In addition to the capacitors shown in the application diagrams, each VDD pin should have an additional capacitor to
ground, of value 0.01 or 0.1 F (not shown for clarity). Approximately equal numbers of each value should be used.
TABLE 7-1: COMPONENT VALUES IN APPLICATION DIAGRAMS
Reference
Designator Value Description Notes
COUT 4.7F Bypass capacitors to ground (<1ESR)
for regulator stability. Place as close as possible to the
PHY.
CVBUS See Table 7-2,
"Capacitance
Values at VBUS of
USB Connector"
Capacitor to ground required by the
USB Specification. Microchip
recommends <1ESR.
Place near the USB connector.
CBYP System dependent. Bypass capacitor to ground. Place as close as possible to the
PHY.
CDC_BLOCK System dependent. The USB connector housing may be
AC-coupled to the device ground. Industry convention is to ground
only the host side of the cable
shield.
RVBUS Max of 820 in
Host or OTG
applications.
Series resistor to reduce any transient
voltage on the VBUS pin of the
USB3300.
The transient must not be allowed
to exceed the value of VVBUS for
longer than 500 s
ID Pin Okay to leave No Connection (NC)
in device mode.
TABLE 7-2: CAPACITANCE VALUES AT VBUS OF USB CONNECTOR
MODE MIN Value MAX Value
Host 120F
Device 1F10F
OTG 1F6.5F
USB3300
DS00001783C-page 40 2014-2015 Microchip Technology Inc.
7.1 Application Diagrams
FIGURE 7-1: USB3300 APPLICATION DIAGRAM (PERIPHERAL)
Link Controller
USB3300
RBIAS
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
VDD3.3
VDD3.3
VBUS
DM
DP
ID
RESET
USB
Receptacle
DM
DP
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
7
8
32
GND FLAG
2
3
VBUS 1
SHIELD
GND
16
6
4
5
CBYP
CVBUS
3.3V
Supply
RVBUS may be installed in this
configuration to assist in protecting
the VBUS pin. 820 Ohms will protect
against VBUS transients up to 8.5V.
10K Ohms will protect against
transients up to 10V.
VDDA1.8 29
CDC_BLOCK 12.0k
1%
Steady state voltage at the VBUS pin must
not be allowed to exceed VVBUS.
RVBUS
NC
17
18
19
20
21
22
23
24
13
11
12
14
9
COUT
XI 28
CPEN
3
NC
XO 27
1M
CLOAD
CLOAD
REG_EN
VDD3.3
30
31
VDD1.8 26
12
VDD1.8 15
COUT
VDD3.3
25
EXTVBUS
10
NC
The capacitor CVBUS
must be installed on
this side of RVBUS.
2014-2015 Microchip Technology Inc. DS00001783C-page 41
USB3300
FIGURE 7-2: USB3300 APPLICATION DIAGRAM (HOST OR OTG)
Link Controller
USB3300
RBIAS
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
VDD3.3
VDD3.3
VBUS
DM
DP
ID
RESET
USB
Receptacle
DM
DP
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
7
8
32
GND FLAG
2
3
VBUS 1
ID
16
6
4
5
CBYP
CVBUS
3.3V
RVBUS may be installed to assist
in protecting the VBUS pin. 820
Ohms will protect against VBUS
transients up to 8.5V.
VDDA1.8 29
12.0k
1%
Steady state voltage at the VBUS pin must not
be allowed to exceed VVBUS.
RVBUS
17
18
19
20
21
22
23
24
13
11
12
14
9
COUT
XI 28
XO 27
1M
CLOAD
CLOAD
REG_EN
VDD3.3
30
31
VDD1.8 26
12
VDD1.8 15
COUT
VDD3.3
25
The capacitor CVBUS must be
installed on this side of RVBUS.
CPEN
3
VBUS Switch
OUT
EN
IN
EXTVBUS
10
FLG
GND
SHIELD
4
5V
USB3300
DS00001783C-page 42 2014-2015 Microchip Technology Inc.
FIGURE 7-3: USB3300 APPLICATION DIAGRAM (PERIPHERAL WITH OVER VOLTAGE
PROTECTION)
Link Controller
USB3300
RBIAS
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
VDD3.3
VDD3.3
VBUS
DM
DP
ID
RESET
USB
Receptacle
DM
DP
DIR
NXT
STP
CLKOUT
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA0
DATA1
7
8
32
GND FLAG
2
3
VBUS 1
SHIELD
GND
16
6
4
5
CBYP
CVBUS
3.3V
Supply
VDDA1.8 29
CDC_BLOCK 12.0k
1%
Steady state voltage at the VBUS pin must
not be allowed to exceed VVBUS.
NC
17
18
19
20
21
22
23
24
13
11
12
14
9
COUT
XI 28
CPEN
3
NC
XO 27
1M
CLOAD
CLOAD
REG_EN
VDD3.3
30
31
VDD1.8 26
12
VDD1.8 15
COUT
VDD3.3
25
EXTVBUS
10
NC
The capacitor CVBUS
must be installed on
this side of RVBUS.
Over-voltage device may be desired to
protect against out-of-spec chargers.
Optional
Over-voltage
Protection
2014-2015 Microchip Technology Inc. DS00001783C-page 43
USB3300
7.2 Multi-port Applications
To support multiple ports a single USB3300 host can be combined with one of Microchip’s many hub products to expand
the number of ports. Microchip has 2-port, 3-port, 4-port, and 7-port hub designs which can be used to expand the num-
ber of ports in a design.
Using a Microchip hub to expand the number of ports allows a single Link to run several USB devices without a separate
Link to support each USB port. Another advantage of using a Microchip hub is on products where the main board is not
located near the USB ports. The USB3300 can be placed on the main board with the Link ASIC and the hub can be
placed on a separate board next to the USB ports. The only data connection required between the boards is DP and DM.
The CPEN output of the USB3300 is optional and can be used to turn the Hub on or off to lower current when the USB
connection isn’t needed.
7.3 Evaluation Board
An evaluation board, EVB-USB3300, is available for building a prototype system with the USB3300. The evaluation
board provides an industry standard T&MT connector to interface a ULPI Link controller and a Mini-AB connector for
the USB cable. A 500mA fault protected 5V Vbus switch that is controlled by the USB3300 is also included.
7.4 ESD Performance
The USB3300 is protected from ESD strikes. By eliminating the requirement for external ESD protection devices, board
space is conserved, and the board manufacturer is enabled to reduce cost. The advanced ESD structures integrated
into the USB3300 protect the device whether or not it is powered up. When the USB3300 is not powered, the digital I/O
pins are loaded by the ESD structures, and must not be driven by external signals.
7.4.1 HUMAN BODY MODEL (HBM) PERFORMANCE
HBM testing verifies the ability to withstand the ESD strikes like those that occur during handling and manufacturing,
and is done without power applied to the IC. To pass the test, the device must have no change in operation or perfor-
mance due to the event. All pins on the USB3300 provide 8kV HBM protection.
FIGURE 7-4: EXPANDING DOWNSTREAM PORTS FOR USB3300 HOST APPLICATIONS
USB3300
DP
DM
CPEN
USBDP0
USBDM0
VBUS_DET
SOC w/
ULPI Link
DP
DM
USB Port 1
USBDP1
USBDN1
DIR
NXT
STP
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
CLOCK
DIR
NXT
STP
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
CLOCK
USB2502
DP
DM
USB Port 2
USBDP2
USBDN2
DP
DM
USB Port 3
USBDP3
USBDN3
DP
DM
USB Port 4
USBDP4
USBDN4
DP
DM
USB Ports 5-7
USBDP5-7
USBDN5-7
USB2507
USB2503
USB2504
USB3300
DS00001783C-page 44 2014-2015 Microchip Technology Inc.
7.4.2 IEC61000-4-2 PERFORMANCE
The IEC61000-4-2 ESD specification is an international standard that addresses system-level immunity to ESD strikes
while the end equipment is operational. In contrast, the HBM ESD tests are performed at the device level with the device
powered down.
Microchip contracts with independent laboratories to test the USB3300 to IEC61000-4-2 in a working system. Reports
are available upon request. Please contact your Microchip representative, and request information on 3rd party ESD
test results. The reports show that systems designed with the USB3300 can safely dissipate ±15kV air discharges and
±8kV contact discharges per the IEC61000-4-2 specification without additional board level protection.
Both air discharge and contact discharge test techniques for applying stress conditions are defined by the IEC61000-4-
2 ESD document.
7.4.2.1 Air Discharge
To perform this test, a charged electrode is moved close to the system being tested until a spark is generated. This test
is difficult to reproduce because the discharge is influenced by such factors as humidity, the speed of approach of the
electrode, and construction of the test equipment.
7.4.2.2 Contact Discharge
The uncharged electrode first contacts the pin to prepare this test, and then the probe tip is energized. This yields more
repeatable results, and is the preferred test method. The independent test laboratories contracted by Microchip provide
test results for both types of discharge methods.
2014-2015 Microchip Technology Inc. DS00001783C-page 45
USB3300
8.0 PACKAGE OUTLINE
The USB3300 is offered in a compact 32 pin QFN package.
FIGURE 8-1: USB3300-EZK 32-PIN QFN PACKAGE OUTLINE, 5 X 5 X 0.9MM BODY (1 OF 2)
Note: For the most current package drawings,
see the Microchip Packaging Specification at
http://www.microchip.com/packaging
USB3300
DS00001783C-page 46 2014-2015 Microchip Technology Inc.
FIGURE 8-2: USB3300-EZK 32-PIN QFN PACKAGE OUTLINE, 5 X 5 X 0.9MM BODY (2 OF 2)
Note: For the most current package drawings,
see the Microchip Packaging Specification at
http://www.microchip.com/packaging
2014-2015 Microchip Technology Inc. DS00001783C-page 47
USB3300
FIGURE 8-3: QFN, 5X5 TAPING DIMENSIONS AND PART ORIENTATION
USB3300
DS00001783C-page 48 2014-2015 Microchip Technology Inc.
APPENDIX A: DATA SHEET REVISION HISTORY
TABLE A-1: REVISION HISTORY
Revision Section/Figure/Entry Correction
DS00001783C (06-03-16) Table 5-8, "USB3300 Quartz
Crystal Specifications"
Column headings modified.
DS00001783B (06-03-15) Section , "Product Identifica-
tion System," on page 51
Updated ordering code temperature information.
DS00001783A (07-08-14) Replaces previous SMSC version Rev. 1.1 (01-24-13)
Document converted to Microchip template
Reel drawings and mention of reel quantity removed from Package Outline chapter.
Rev. 1.1
(01-24-13)
Section 5.1, "Piezoelectric
Resonator for Internal
Oscillator," on page 15
Added section.
Rev. 1.08
(11-07-07)
Table 3-1, "USB3300 Pin
Definitions 32-Pin QFN
Package"
Description for Pins 15, 26, 29 and 31 modified.
Rev. 1.08
(10-25-07) Table 3-1, "USB3300 Pin
Definitions 32-Pin QFN
Package"
Description for “REG_EN” (pin 31) modified.
Rev. 1.07
(09-26-07)
Section 7.4, "ESD
Performance" Added last sentence warning against multiplexing
digital I/O signals.
Rev. 1.07
(09-26-07)
Figure 7-2, "USB3300
Application Diagram (Host or
OTG)" and Figure 7-3,
"USB3300 Application
Diagram (Peripheral with
Over Voltage Protection)"
Added information on RVBUS.
Rev. 1.07
(09-25-07)
Application Notes on page 39
and Figure 7-1, "USB3300
Application Diagram
(Peripheral)"
Changed to include information on RVBUS.
Rev. 1.07
(09-20-07) Table 3-1, "USB3300 Pin
Definitions 32-Pin QFN
Package"
Changed description of RESET.
Rev. 1.07
(09-20-07)
Added Tape & Reel PN and drawings.
Rev. 1.06
(05-07-07)
“USB2.0” changed to “USB 2.0”
Rev. 1.06
(07-19-06)
Applications First sentence modified from: “The USB3300 is
targeted for any application where a Hi-Speed USB
connection is desired and when board space and
interface pins must be minimized.”
To: “The USB3300 is the ideal companion to any
ASIC, SoC or FPGA solution designed with a ULPI
Hi-Speed USB host, peripheral or OTG core.”
Rev. 1.06
(07-18-06)
Applications Added “PDAs”, removed “Entertainment Devices”,
added “Digital” to “Still and Video Games”.
Rev. 1.06
(07-18-06) Features Moved “Applications” to cover; re-ordered several
features.
Rev. 1.06
(07-17-06) Features and General
Description on page 4 Referenced Industrial Operating Temperature.
Table 4-1, "Maximum
Guaranteed Ratings" Changed Operating Temperature from “0 to 70” to “-
40 to 85”
2014-2015 Microchip Technology Inc. DS00001783C-page 49
USB3300
Table 4-2, "Recommended
Operating Conditions" Changed Operating Temperature from “0 to 70” to “-
40 to 85”
Rev. 1.05
(05-26-06)
Table 4-1 Added ESD and Latch-up entries
Section 7.4, "ESD
Performance" Added Section 7.4
Cover - Features: ESD
protection levels of ±8kV
HBM without external
protection devices
Removed mention of wrapper available. (Also
removed from Section 1 and 6.1.1) Added bullets on
ESD and latch-up.
USB Interrupt Status
Register: Address = 13h (read
only with auto clear) on page
23
Corrected title of section
Rev 1.04
(02-28-06)
Table 6-5, "ULPI RX CMD
Encoding" Corrected CMD encoding for DATA[5:4]
USB Interrupt Status
Register: Address = 13h (read
only with auto clear)
Corrected to read “Status Register” instead of “Latch
Register”
USB3300 Pin Definitions 32-
Pin QFN Package Changed pin 31 from VCCA1.8 to REG_EN.
Changed pin description to describe REG_EN
operation
Table 8.1, "32 Terminal QFN
Package Parameters" Updated package dimensions per package data
sheet located in specifications database
Figure 3.1, "USB3300 Pin
Diagram" Changed pin 31 in figure 3.1 to be named
“REG_EN”.
Table 5-1, "Electrical
Characteristics: Supply Pins" Added max current information
Rev. 1.03
(05-11-05)
Table 3-1, "USB3300 Pin
Definitions 32-Pin QFN
Package"
Modified description for pin 29 (wording changed
from “digital” to “analog”)
Table 6-2, "ULPI Interface
Timing" Add min value to Output delay
Cover - Title Added OTG to Title
Changed to OTG version of USB logo.
TABLE A-1: REVISION HISTORY (CONTINUED)
Revision Section/Figure/Entry Correction
USB3300
DS00001783C-page 50 2014-2015 Microchip Technology Inc.
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-
tains the following information:
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion
groups, Microchip consultant program member listing
Business of Micr oc hip – Product selector and ordering guides, latest Microchip press releases, listing of semi-
nars and events, listings of Microchip sales offices, distributors and factory representatives
CUSTOMER CHANGE NOTIFICATION SERVICE
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or
development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-
cation” and follow the registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-
ment.
Technical support is available through the web site at: http://www.microchip.com/support
2014-2015 Microchip Technology Inc. DS00001783C-page 51
USB3300
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: USB3300
Temperature
Range: Blank = -40C to +85C (Industrial)
Package: EZK = 32-pin QFN
Tape and Reel
Option: Blank = Standard packaging (tray)
TR = Tape and Reel(1)
Examples:
a) USB3300-EZK
32-pin QFN
RoHS Compliant package
b) USB3300-EZK-TR
32-pin QFN (Tape & Reel)
RoHS Compliant package
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This
identifier is used for ordering purposes and is
not printed on the device package. Check
with your Microchip Sales Office for package
availability with the Tape and Reel option.
PART NO. [X] XXX
PackageTemperature
Range
Device
[X](1)
Tape and Reel
Option
-
-
USB3300
DS00001783C-page 52 2014-2015 Microchip Technology Inc.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be super-
seded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REP-
RESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any Microchip intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer,
LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST
Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch,
Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial
Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless
DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2014-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 9781522406495
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its wor ldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedu res
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, micro perip hera ls, nonvolat ile memor y and
analog products . I n additio n, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 ce rtified.
QUALITYMANAGEMENTS
YSTEM
CERTIFIEDBYDNV
== ISO/TS16949==
DS00001783C-page 53 2014-2015 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Pforzheim
Tel: 49-7231-424750
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
01/27/15
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Microchip:
USB3300-EZK-TR USB3300-EZK