HEXFET® Power MOSFET
Specifically designed for Automotive applications, these
HEXFET® Power MOSFET's in a Dual SO-8 package utilize
the lastest processing techniques to achieve extremely low
on-resistance per silicon area. Additional features of these
Automotive qualified HEXFET Power MOSFET's are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating. These benefits combine
to make this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety of other
applications.
The efficient SO-8 package provides enhanced thermal
characteristics and dual MOSFET die capability making it ideal
in a variety of power applications. This dual, surface mount
SO-8 can dramatically reduce board space and is also available
in Tape & Reel.
Absolute Maximum Ratings
Description
03/25/09
www.irf.com 1
l
Advanced Process Technology
l
Dual N-Channel MOSFET
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Repetitive Avalanche Allowed up to Tjmax
l
Automotive [Q101] Qualified
Benefits
Typical Applications
l
Anti-lock Braking Systems (ABS)
l
Electronic Fuel Injection
l
Power Doors, Windows & Seats
AUTOMOTIVE MOSFET
PD - 93944D
IRF7103Q
VDSS RDS(on) max (mW) ID
50V 130@VGS = 10V 3.0A
200@VGS = 4.5V 1.5A
Symbol Parameter Typ. Max. Units
RθJL Junction-to-Drain Lead –– 20
RθJA Junction-to-Ambient ––– 62.5 °C/W
Thermal Resistance
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 4.5V 3.0
ID @ TC = 70°C Continuous Drain Current, VGS @ 4.5V 2.5 A
IDM Pulsed Drain Current 25
PD @TC = 25°C Power Dissipation2.4 W
Linear Derating Factor 16 mW/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy22 mJ
IAR Avalanche CurrentSee Fig.16c, 16d, 19, 20 A
EAR Repetitive Avalanche EnergymJ
dv/dt Peak Diode Recovery dv/dt 12 V/ns
TJ, TSTG Junction and Storage Temperature Range -55 to + 175 °C
D1
D1
D2
D2
G1
S2
G2
S1
Top View
8
1
2
3
45
6
7
SO-8
IRF7103Q
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C, IS = 1.5A, VGS = 0V
trr Reverse Recovery Time ––– 35 53 ns TJ = 25°C, IF = 1.5A
Qrr Reverse Recovery Charge ––– 45 67 nC di/dt = 100A/µs
Source-Drain Ratings and Characteristics
A
12



3.0

Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Surface mounted on 1 in square Cu board
Starting TJ = 25°C, L = 4.9mH
RG = 25, IAS = 3.0A. (See Figure 12).
ISD 2.0A, di/dt 155A/µs, VDD V(BR)DSS,
TJ 175°C
Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 50 –– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.057 V/°C Reference to 25°C, ID = 1mA
––– ––– 130 VGS = 10V, ID = 3.0A
––– ––– 200 VGS = 4.5V, ID = 1.5A
VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 3.4 ––– ––– S VDS = 15V, ID = 3.0A
––– ––– 2.0 VDS = 40V, VGS = 0V
––– ––– 25 VDS = 40V, VGS = 0V, TJ = 55°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
QgTotal Gate Charge –– 10 15 ID = 2.0A
Qgs Gate-to-Source Charge –– 1.2 ––– nC VDS = 40V
Qgd Gate-to-Drain ("Miller") Charge ––– 2.8 ––– VGS = 10V
td(on) Turn-On Delay Time ––– 5.1 –– VDD = 25V
trRise Time ––– 1.7 ––– ID = 1.0A
td(off) Turn-Off Delay Time ––– 15 ––– RG = 6.0
tfFall Time ––– 2.3 ––– RD = 25
Ciss Input Capacitance ––– 255 ––– VGS = 0V
Coss Output Capacitance ––– 69 –– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 29 –– ƒ = 1.0MHz
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
IGSS
µA
m
RDS(on) Static Drain-to-Source On-Resistance
IDSS Drain-to-Source Leakage Current
nA
ns
S
D
G
IRF7103Q
www.irf.com 3
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
3.0A
3.0 6.0 9.0 12.0 15.0
VGS, Gate-to-Source Voltage (V)
1.00
10.00
100.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
20µs PULSE WIDTH
0.1 110 100
VDS , Drain-to-Source Voltage (V)
1
10
100
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
IRF7103Q
4www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.1
1
10
0.4 0.6 0.8 1.0 1.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 175 C
J°
T = 25 C
J°
0 1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
0 3 6 9 12
0
3
6
9
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I=
D2.0A
V = 10V
DS
V = 25V
DS
V = 40V
DS
110 100
VDS , Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance(pF)
Cos s
Crs s
Ciss
VGS = 0V, f = 1 MHZ
Ciss
= C
gs + C
gd , C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + C
gd
IRF7103Q
www.irf.com 5
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
25 50 75 100 125 150 175
0.0
0.6
1.2
1.8
2.4
3.0
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z thJA ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + TA
IRF7103Q
6www.irf.com
Fig 13. Typical On-Resistance Vs. Drain
Current
Fig 12. Typical On-Resistance Vs. Gate
Voltage
Fig 14. Typical Threshold Voltage Vs.
Junction Temperature
Fig 15. Typical Power Vs. Time
4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
-VGS, Gate -to -Source Voltage (V)
0.09
0.10
0.11
0.12
0.13
0.14
0.15
RDS(on), Drain-to -Source On Resistance ()
ID = 3.0A
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.3
1.5
1.8
2.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
0 5 10 15 20 25 30 35 40
ID , Drain Current (A)
0.000
0.500
1.000
1.500
2.000
2.500
RDS (on) , Drain-to-Source On Resistance (
)
VGS = 10V
VGS = 4. 5V
1.00 10.00 100.00 1000.00
Time (sec)
0
10
20
30
40
50
60
70
Power (W)
IRF7103Q
www.irf.com 7
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VGS
Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform
Fig 16a. Maximum Avalanche Energy
Vs. Drain Current
Fig 16d. Unclamped Inductive Waveforms
Fig 16c. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
12
24
36
48
60
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
1.2A
2.5A
3.0A
IRF7103Q
8www.irf.com
Fig 19. Typical Avalanche Current Vs.Pulsewidth
Fig 20. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-08 1.0E- 07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01
tav (sec)
0.01
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
0.10
25 50 75 100 125 150 175
Starting T
J , Junction TemperatureC)
0
5
10
15
20
25
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cy cle
ID
= 3.0A
IRF7103Q
www.irf.com 9
SO-8 Package Details
SO-8 Part Marking
H
'
(
\
E
$
$
+
.
/




%$6,&























%$6,&








0,1 0$;
0,//,0(7(56,1&+(6
0,1 0$;
',0

H
F    
%$6,& %$6,&


' %
(
$
H
;
+
>@ $
.[
;/ ;F
\
>@ & $ %
H $
$
;E
&
>@

)22735,17
;>@
>@
;>@
287/,1(&21)250672-('(&287/,1(06$$
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
',0(16,21'2(6127,1&/8'(02/'3527586,216
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
02/'3527586,21612772(;&(('>@
;>@
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
)
<::
;;;;
3$57180%(5
/27&2'(
:: :((.
< /$67',*,72)7+(<($5
'$7(&2'(<::
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF7103Q
10 www.irf.com
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
FEED DIRECTION
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
SO-8 Tape and Reel
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/02
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/