High Voltage IGBT IXGF36N300 VCES = 3000V = 36A IC25 VCE(sat) 2.7V For Capacitor Discharge Applications ( Electrically Isolated Tab) ISOPLUS i4-PakTM Symbol Test Conditions VCES TJ = 25C to 150C 3000 V VGES Continuous 20 V VGEM Transient 30 V IC25 TC = 25C 36 A IC110 TC = 110C ICM TC = 25C, VGE = 20V, 1ms SSOA VGE = 20V, TVJ = 125C, RG = 2 (RBSOA) Clamped Inductive Load PC TC = 25C Maximum Ratings 18 A 400 A ICM = 300 A VCE 0.8 * VCES TJ W -55 ... +150 C 150 C Tstg -55 ... +150 C 300 260 C C 20..120/4.5..27 Nm/lb-in. 4000 V~ 5 g 1.6 mm (0.062 in.) from Case for 10s Plastic Body for 10s FC Mounting Force VISOL 50/60Hz, 1 minute Weight 2 Isolated Tab 5 1 = Gate 2 = Emitter 5 = Collector Features 160 TJM TL TSOLD 1 Silicon Chip on Direct-Copper Bond (DCB) Substrate Isolated Mounting Surface 4000V Electrical Isolation High Peak Current Capability Low Saturation Voltage Molding Epoxies Meet UL 94 V-0 Flammability Classification Applications Capacitor Discharge Pulser Circuits Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. BVCES IC = 250A, VGE = 0V 3000 VGE(th) IC = 250A, VCE = VGE 3.0 ICES VCE = 0.8 * VCES, VGE = 0V Note 2 ,TJ = 125C IGES VCE = 0V, VGE = 20V VCE(sat) IC IC = 36A, VGE = 15V, Note 1 = 100A (c) 2009 IXYS CORPORATION, All Rights Reserved Advantages V 5.0 V 50 A 2 mA 200 nA 2.7 5.2 V V High Power Density Easy to Mount DS99979C(11/09) IXGF36N300 Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) gfs IC = 36A, VCE = 10V, Note 1 IC(ON) VGE = 15V, VCE = 20V, Note 1 Characteristic Values Min. Typ. Max. 15 Cies Coes 25 S 360 A 2690 pF 123 pF 34 pF 136 nC 21 nC 52 nC 36 ns 185 ns 215 ns 540 ns 0.15 30 0.78 C/W C/W C/W VCE = 25V, VGE = 0V, f = 1MHz Cres Qg Qge IC = 30A, VGE = 15V, VCE = 600V Qgc td(on) tr td(off) tf Resistive Switching Times IC = 36A, VGE = 15V VCE = 1500V, RG = 2 RthJC RthCS RthJA ISOPLUS i4-PakTM (HV) Outline Pin 1 = Gate Pin 2 = Emitter Pin 3 = Collector Tab 4 = Isolated Notes: 1. Pulse test, t < 300s, duty cycle, d < 2%. 2. Device must be heatsunk for high-temperature leakage current measurements to avoid thermal runaway. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXGF36N300 Fig. 1. Output Characteristics @ T J = 25C Fig. 2. Extended Output Characteristics @ T J = 25C 80 400 VGE = 25V 20V 15V 13V 11V IC - Amperes 60 VGE = 25V 20V 350 15V 300 13V 50 IC - Amperes 70 9V 40 30 7V 20 250 200 11V 150 9V 100 10 7V 50 5V 0 5V 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8 12 14 16 18 20 VCE - Volts VCE - Volts Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ T J = 125C 1.8 80 VGE = 25V 20V 15V 13V 11V 60 VGE = 15V 1.6 50 VCE(sat) - Normalized 70 IC - Amperes 10 9V 40 7V 30 I C = 72A I C = 36A I C = 18A 1.4 1.2 1.0 20 10 0.8 5V 0 0.6 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -50 -25 0 25 VCE - Volts Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage 75 100 125 150 Fig. 6. Input Admittance 6.0 80 5.5 70 TJ = 25C 5.0 60 I 4.0 C IC - Amperes 4.5 VCE - Volts 50 TJ - Degrees Centigrade = 72A 3.5 3.0 50 40 TJ = 125C 25C - 40C 30 36A 20 2.5 10 2.0 18A 0 1.5 5 6 7 8 9 10 11 VGE - Volts (c) 2009 IXYS CORPORATION, All Rights Reserved 12 13 14 15 4.0 4.5 5.0 5.5 6.0 6.5 VGE - Volts 7.0 7.5 8.0 8.5 9.0 IXGF36N300 Fig. 7. Transconductance Fig. 8. Gate Charge 40 16 TJ = - 40C VCE = 600V 14 30 25C 12 25 125C 10 VGE - Volts g f s - Siemens 35 20 15 8 6 10 4 5 2 0 I C = 30A I G = 10mA 0 0 10 20 30 40 50 60 70 80 90 0 20 40 IC - Amperes 60 80 100 120 140 QG - NanoCoulombs Fig. 10. Capacitance Fig. 9. Reverse-Bias Safe Operating Area 10,000 350 f = 1 MHz Capacitance - PicoFarads 300 IC - Amperes 250 200 150 100 50 0 500 TJ = 125C Cies 1,000 Coes 100 RG = 2 dv / dt < 10V / ns Cres 10 750 1000 1250 1500 1750 2000 2250 2500 2750 0 3000 5 10 15 20 25 30 35 40 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance Z(th)JC - C / W 1.000 0.100 0.010 0.001 0.00001 0.0001 0.001 0.01 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 0.1 1 10 IXGF36N300 Fig. 13. Resistive Turn-on Rise Time vs. Drain Current Fig. 12. Resistive Turn-on Rise Time vs. Junction Temperature 450 450 RG = 2 , VGE = 15V 400 VCE = 1500V 350 300 I C = 72A 250 TJ = 125C 350 t r - Nanoseconds t r - Nanoseconds 400 RG = 2 , VGE = 15V 300 VCE = 1500V 250 200 200 I C = 36A 150 TJ = 25C 150 100 100 25 35 45 55 65 75 85 95 105 115 125 15 20 25 30 35 40 TJ - Degrees Centigrade Fig. 14. Resistive Turn-on Switching Times vs. Gate Resistance 1,000 td(on) - - - - tf 70 75 td(off) - - - - 230 1,000 100 t f - Nanoseconds I C = 36A 1200 100 10 1000 10 1000 100 210 I 800 C = 36A 200 600 190 400 180 I C = 72A 170 0 25 35 45 RG - Ohms 55 65 75 85 95 105 115 160 125 TJ - Degrees Centigrade Fig. 16. Resistive Turn-off Switching Times vs. Drain Current Fig. 17. Resistive Turn-off Switching Times vs. Gate Resistance 2400 10,000 290 10,000 tf td(off) - - - - 270 RG = 2, VGE = 15V TJ = 125C 230 800 210 VCE = 1500V t d(off) - Nanoseconds 250 t d(off) - Nanoseconds VCE = 1500V 1600 td(off) - - - - TJ = 125C, VGE = 15V t f - Nanoseconds tf 2000 220 VCE = 1500V t d(off) - Nanoseconds I C = 72A t d(on) - Nanoseconds t r - Nanoseconds 65 RG = 2, VGE = 15V 200 t f - Nanoseconds 60 240 1400 VCE = 1500V 1200 55 1600 TJ = 125C, VGE = 15V 1 50 Fig. 15. Resistive Turn-off Switching Times vs. Junction Temperature 10,000 tr 45 IC - Amperes I C = 36A 1,000 1,000 I C = 72A TJ = 25C 400 190 0 170 15 20 25 30 35 40 45 50 55 60 IC - Amperes (c) 2009 IXYS CORPORATION, All Rights Reserved 65 70 75 100 1 10 100 100 1000 RG - Ohms IXYS REF: G_36N300(8P)11-23-09-D Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.