February 2010 Doc ID 5150 Rev 8 1/21
21
TS922, TS922A
Rail-to-rail high output current dual operational amplifier
Features
Rail-to-rail input and output
Low noise: 9 nV/ Hz
Low distortion
High output current: 80 mA
(able to drive 32 Ω loads)
High-speed: 4 MHz, 1 V/μs
Operating from 2.7 to 12 V
Low input offset voltage: 900 μV max (TS922A)
ESD internal protection: 2 kV
Latch-up immunity
Macromodel included in this specification
Dual version available in flip-chip package
Applications
Headphone amplifiers
Sound cards, multimedia systems
Line drivers, actuator drivers
Servo amplifiers
Mobile phones and portable equipment
Instrumentation with low noise as key factor
Piezoelectric speaker drivers
Description
The TS922 is a rail-to-rail dual BiCMOS
operational amplifier optimized and fully specified
for 3 and 5 V operation.
The device’s high output current allows low-load
impedances to be driven.
Very low noise, low distortion, low offset and a
high output current capability make this device an
excellent choice for high quality, low voltage or
battery operated audio systems.
The device is stable for capacitive loads up to
500 pF.
D
SO-8
(Plastic micropackage)
P
TSSOP8
(Thin shrink small outline package)
J
(Flip-chip)
N
DIP8
(Plastic package)
www.st.com
Pin diagrams TS922, TS922A
2/21 Doc ID 5150 Rev 8
1 Pin diagrams
Figure 1. Pin connections (top view)
Figure 2. Pinout for flip-chip package (top view)
1
2
3
45
6
7
8
-
+-
+
Inverting Input 1
Output 1
Non-inverting Input 1
V
CC
V
CC
+
Output 2
Inverting Input 2
Non-inverting Input 2
OUT2 -IN2 +IN2
VCC+ GND
+IN1-IN1OUT1
-
-
+
+
OUT2 -IN2 +IN2
VCC+ GND
+IN1-IN1OUT1
-
-
+
+
TS922, TS922A Absolute maximum ratings and operating conditions
Doc ID 5150 Rev 8 3/21
2 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR)
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. All voltage values, except differential voltage are with respect to network ground terminal.
14 V
Vid Differential input voltage(2)
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If
Vid > ±1 V, the maximum input current must not exceed ±1 mA. In this case (Vid > ±1 V), an input series
resistor must be added to limit the input current.
±1 V
Vin Input voltage(3)
3. Do not exceed 14 V.
VCC- -0.3 to VCC++0.3 V
Tstg Storage temperature -65 to +150 °C
Rthja
Thermal resistance junction to ambient(4)
SO-8
TSSOP8
Flip-chip
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-
circuits on all amplifiers. These values are typical.
125
120
90
°C/W
Rthjc
Thermal resistance junction to case(4)
SO-8
TSSOP8
40
37
°C/W
TjMaximum junction temperature 150 °C
ESD
HBM: human body model(5)
MM: machine model(6)
CDM: charged device model(7)
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
2000
120
1500
V
Output short-circuit duration See note(8)
8. There is no short-circuit protection inside the device: short-circuits from the output to VCC can cause
excessive heating. The maximum output current is approximately 80 mA, independent of the magnitude of
VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
Latch-up immunity 200 mA
Soldering temperature (10 sec), leaded version
Soldering temperature (10 sec), unleaded version
250
260 °C
Absolute maximum ratings and operating conditions TS922, TS922A
4/21 Doc ID 5150 Rev 8
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 2.7 to 12 V
Vicm Common mode input voltage range VCC- -0.2 to VCC+ +0.2 V
Toper Operating free air temperature range -40 to +125 °C
TS922, TS922A Electrical characteristics
Doc ID 5150 Rev 8 5/21
3 Electrical characteristics
Table 3. Electrical characteristics measured at VCC = +3 V, VDD = 0 V, Vicm = VCC/2,
Tamb = 25°C, and RL connected to VCC/2 (unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vio Input offset voltage
TS922
TS922A
TS922IJ (flip-chip)
3
0.9
1.5
mV
Tmin T
amb T
max
TS922
TS922A
TS922IJ (flip-chip)
5
1.8
2.5
DVio Input offset voltage drift 2 μV/°C
Iio Input offset current Vout = VCC/2
Tmin Tamb Tmax
130
30 nA
Iib Input bias current Vout = VCC/2
Tmin Tamb Tmax
15 100
100 nA
VOH High level output voltage
RL= 10 kΩ
Tmin Tamb Tmax
2.90
2.90 V
RL = 600 Ω
Tmin Tamb Tmax
2.87
2.87 V
RL = 32 Ω2.63 V
VOL Low level output voltage
RL= 10 kΩ
Tmin Tamb Tmax
50
50 mV
RL = 600 Ω
Tmin Tamb Tmax
100
100 mV
RL = 32 Ω180 mV
Avd Large signal voltage gain
RL= 10 kΩ, Vout = 2 Vp-p
Tmin T
amb T
max 70
200
V/mVRL = 600 Ω, Vout = 2 Vp-p
Tmin T
amb T
max 15
35
RL = 32 Ω, Vout = 2 Vp-p 16
ICC Total supply current No load, Vout = VCC/2
Tmin Tamb Tmax
23
3.2 mA
GBP Gain bandwidth product RL = 600 Ω4MHz
CMR Common mode rejection ratio Tmin Tamb Tmax
60
56
80 dB
SVR Supply voltage rejection ratio VCC = 2.7 to 3.3 V
Tmin Tamb Tmax
60
60
85 dB
IoOutput short-circuit current 50 80 mA
SR Slew rate 0.7 1.3 V/μs
φm Phase margin at unit gain RL = 600 Ω, CL = 100 pF 68 Degrees
Electrical characteristics TS922, TS922A
6/21 Doc ID 5150 Rev 8
GmGain margin RL = 600 Ω, CL = 100 pF 12 dB
enEquivalent input noise voltage f = 1 kHz 9
THD Total harmonic distortion Vout = 2 Vp-p, f = 1 kHz, Av = 1,
RL = 600 Ω0.005 %
CsChannel separation 120 dB
Table 3. Electrical characteristics measured at VCC = +3 V, VDD = 0 V, Vicm = VCC/2,
Tamb = 25°C, and RL connected to VCC/2 (unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
nV
Hz
------------
TS922, TS922A Electrical characteristics
Doc ID 5150 Rev 8 7/21
Table 4. Electrical characteristics measured at VCC = 5 V, VDD = 0 V, Vicm = VCC/2,
Tamb = 25°C, and RL connected to VCC/2 (unless otherwise specified)
Symbol Parameter Conditions Min. Typ. Max. Unit
Vio Input offset voltage
TS922
TS922A
TS922IJ (flip-chip)
3
0.9
1.5
mV
Tmin T
amb T
max
TS922
TS922A
TS922IJ (flip-chip)
5
1.8
2.5
DVio Input offset voltage drift 2 μV/°C
Iio Input offset current Vout = VCC/2
Tmin Tamb Tmax
130
30 nA
Iib Input bias current Vout = VCC/2
Tmin Tamb T
max
15 100
100 nA
VOH High level output voltage
RL= 10 kΩ
Tmin Tamb Tmax
4.9
4.9
VRL = 600 Ω
Tmin Tamb Tmax
4.85
4.85
RL = 32 Ω4.4
VOL Low level output voltage
RL= 10 kΩ
Tmin Tamb Tmax
50
50
mVRL = 600 Ω
Tmin Tamb Tmax
120
120
RL = 32 Ω300
Avd Large signal voltage gain
RL= 10 kΩ, Vout = 2 Vp-p
Tmin T
amb T
max 70
200 V/mV
RL = 600 Ω, Vout = 2 Vp-p
Tmin T
amb T
max 20
35
RL = 32 Ω, Vout = 2 Vp-p 16
Icc Total supply current No load, Vout = VCC/2
Tmin Tamb Tmax
23
3.2 mA
GBP Gain bandwidth product RL = 600 Ω4MHz
CMR Common mode rejection
ratio Tmin Tamb Tmax
60
56
80 dB
SVR Supply voltage rejection ratio VCC = 4.5 to 5.5 V
Tmin Tamb Tmax
60
60
85 dB
IoOutput short-circuit current 50 80 mA
SR Slew rate 0.7 1.3 V/μs
φm Phase margin at unit gain RL = 600 Ω, CL =100 pF 68 Degrees
GmGain margin RL = 600 Ω, CL =100 pF 12 dB
en
Equivalent input noise
voltage f = 1 kHz 9 nV
Hz
------------
Electrical characteristics TS922, TS922A
8/21 Doc ID 5150 Rev 8
THD Total harmonic distortion Vout = 2 Vp-p, f = 1 kHz, Av = 1,
RL = 600 Ω0.005 %
CsChannel separation 120 dB
Table 4. Electrical characteristics measured at VCC = 5 V, VDD = 0 V, Vicm = VCC/2,
Tamb = 25°C, and RL connected to VCC/2 (unless otherwise specified) (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
TS922, TS922A Electrical characteristics
Doc ID 5150 Rev 8 9/21
Figure 3. Output short circuit current vs.
output voltage
Figure 4. Total supply current vs. supply
voltage
0 0,5 1 1,5 2 2,5 3
-100
-80
-60
-40
-20
0
20
40
60
80
100
Output Volta
g
e (V)
O
utput
S
hort-
C
ircuit
C
urrent
(
mA
)
Source
Sink
Vcc=0/3V
Figure 5. Voltage gain and phase vs.
frequency
Figure 6. Equivalent input noise voltage vs.
frequency
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-20
0
20
40
60
-60
0
60
120
180
Frequency (Hz)
G
ain
(
dB
)
Phase (De g)
gain
phase
Rl=10k
Cl=100pF
0.01 0.1 1 10 100
Frequency (kHz)
0
5
10
15
20
25
30
Equivalent Input Noise (nV/sqrt(Hz)
VCC=±1.5V
RL=100Ω
Figure 7. THD + noise vs. frequency Figure 8. THD + noise vs. frequency
0.01 0.1 1 10 100
Frequency (kHz)
0
0.005
0.01
0.015
0.02
THD+Noise (%)
RL=2k Vo=10Vpp
VCC=±6V Av= 1
0.01 0.1 1 10 100
Frequency (kHz)
0
0.008
0.016
0.024
0.032
0.04
THD+Noise (%)
RL=32Ω Vo=4Vpp
VCC=±2.5V Av= 1
Electrical characteristics TS922, TS922A
10/21 Doc ID 5150 Rev 8
Figure 9. THD + noise vs. frequency Figure 10. THD + noise vs. output voltage
0.01 0.1 1 10 100
Frequency (kHz)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
THD+Noise (%)
RL=32Ω Vo=2Vpp
VCC=±1.5V Av= 10
0 0,2 0,4 0,6 0,8 1 1,2
0,001
0,010
0,100
1,000
10,000
Vou t
(
Vrms
)
THD+Noise
(
%
)
RL=600Ω f=1kHz
VCC=0/3V Av= -1
Figure 11. THD + noise vs. output voltage Figure 12. THD + noise vs. output voltage
Figure 13. Open loop gain and phase vs.
frequency
0 0.2 0.4 0.6 0.8 1
Vout (Vrms)
0.01
0.1
1
10
THD+Noise (%)
RL=32Ω f=1kHz
VCC=±1.5V Av= -1
0 0.2 0.4 0.6 0.8 1 1.2
Vout (Vrms)
0.001
0.01
0.1
1
10
THD+Noise (%)
RL=2kΩ f=1kHz
VCC=±1.5V Av= -1
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Frequency (Hz)
0
10
20
30
40
50
Gain (dB)
0
60
120
180
Phase (Deg)
CL=500pF
TS922, TS922A Macromodel
Doc ID 5150 Rev 8 11/21
4 Macromodel
4.1 Important note concerning this macromodel
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature,
for example) or even worse, outside of the device operating conditions (VCC, Vicm, for
example), is not reliable in any way.
Section 4.2 provides the electrical characteristics resulting from the use of this macromodel.
4.2 Electrical characteristics from macromodelization
Table 5. Electrical characteristics resulting from macromodel simulation at
VCC =3 V, V
DD = 0 V, RL, CL connected to VCC/2, Tamb = 25°C (unless
otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 10 kΩ200 V/mV
ICC No load, per operator 1.2 mA
Vicm -0.2 to 3.2 V
VOH RL = 10 kΩ2.95 V
VOL RL = 10 kΩ25 mV
Isink VO = 3 V 80 mA
Isource VO = 0 V 80 mA
GBP RL = 600 kΩ4MHz
SR RL = 10 kΩ, CL = 100 pF 1.3 V/μs
φmR
L = 600 kΩ68 Degrees
Macromodel TS922, TS922A
12/21 Doc ID 5150 Rev 8
4.3 Macromodel code
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS:
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
*
.SUBCKT TS92X 1 2 3 4 5
*
.MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F
*
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8.125000E+00
RIN 15 16 8.125000E+00
RIS 11 15 2.238465E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 153.5u
VOFN 13 14 DC 0
IPOL 13 5 3.200000E-05
CPS 11 15 1e-9
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.100000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.400000E+00
FCP 4 5 VOFP 1.865000E+02
FCN 5 4 VOFN 1.865000E+02
FIBP 2 5 VOFP 6.250000E-03
FIBN 5 1 VOFN 6.250000E-03
* GM1 STAGE ***************
FGM1P 119 5 VOFP 1.1
FGM1N 119 5 VOFN 1.1
RAP 119 4 2.6E+06
RAN 119 5 2.6E+06
* GM2 STAGE ***************
G2P 19 5 119 5 1.92E-02
G2N 19 5 119 4 1.92E-02
R2P 19 4 1E+07
R2N 19 5 1E+07
**************************
VINT1 500 0 5
GCONVP 500 501 119 4 19.38
VP 501 0 0
GCONVN 500 502 119 5 19.38
VN 502 0 0
TS922, TS922A Macromodel
Doc ID 5150 Rev 8 13/21
********* orientation isink isource *******
VINT2 503 0 5
FCOPY 503 504 VOUT 1
DCOPYP 504 505 MDTH 400E-9
VCOPYP 505 0 0
DCOPYN 506 504 MDTH 400E-9
VCOPYN 0 506 0
***************************
F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5
F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5
F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75
F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75
* COMPENSATION ************
CC 19 119 25p
* OUTPUT ***********
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.250000E+02
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 6.250000E+02
VINM 5 27 5.000000E+01
VOUT 3 23 0
ROUT 23 19 6
COUT 3 5 1.300000E-10
DOP 19 25 MDTH 400E-12
VOP 4 25 1.052
DON 24 19 MDTH 400E-12
VON 24 5 1.052
.ENDS;TS92X
Package information TS922, TS922A
14/21 Doc ID 5150 Rev 8
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.1 Flip-chip package (8 bumps)
Figure 14. Top view and dimensions of 8-bump flip-chip
Figure 15. Flip-chip footprint recommendation
Die size: 1600 µm x 1600 µm ±30 µm
Die height: 350 µm ±20 µm
Die height (including bumps): 600 µm
Bumps diameter: 315 µm ±50 µm
Bumps height: 250 µm ±40 µm
Pitch: 500 µm ±10 µm
600 µm
1600 µm
1600 µm
500µm
500µm
315µm
600 µm
1600 µm
1600 µm
500µm
500µm
315µm
Pad in Cu 18μm with Flash NiAu (6μm, 0.15μm)
150μm min.
500μm
500μm
500μm
500μm
Φ=250μm
Φ=400μm
75µm min.
100μm max.
Track
Solder mask opening
TS922IJ Footprint
Pad in Cu 18μm with Flash NiAu (6μm, 0.15μm)
150μm min.
500μm
500μm
500μm
500μm
Φ=250μm
Φ=400μm
75µm min.
100μm max.
Track
Solder mask opening
Pad in Cu 18μm with Flash NiAu (6μm, 0.15μm)
150μm min.
500μm
500μm
500μm
500μm
Φ=250μm
Φ=400μm
75µm min.
100μm max.
Track
Solder mask opening
TS922IJ Footprint
TS922, TS922A Package information
Doc ID 5150 Rev 8 15/21
Figure 16. Flip-chip marking (top view)
Figure 17. Tape and reel specification (top view)
Note: Device orientation: the devices are oriented in the carrier pocket with bump number A1
adjacent to the sprocket holes.
Logo: ST
Part number: 922
Date code: YWW
The dot indicates the bump 1A
corner
922
YWW
BUMP 1A CORNER
ELEADFREE
922
YWW
BUMP 1A CORNER
ELEADFREE
A
1
A
1
User direction of feed
A
1
A
1
User direction of feed
Package information TS922, TS922A
16/21 Doc ID 5150 Rev 8
5.2 SO-8 package
Figure 18. SO-8 package mechanical drawing
Table 6. SO-8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0 8°
ccc 0.10 0.004
TS922, TS922A Package information
Doc ID 5150 Rev 8 17/21
5.3 TSSOP8 package
Figure 19. TSSOP8 package mechanical drawing
Table 7. TSSOP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
Package information TS922, TS922A
18/21 Doc ID 5150 Rev 8
5.4 DIP8 package
Figure 20. DIP8 package mechanical drawing
Table 8. DIP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A5.330.210
A1 0.38 0.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.045 0.060 0.070
c 0.20 0.25 0.36 0.008 0.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
TS922, TS922A Ordering information
Doc ID 5150 Rev 8 19/21
6 Ordering information
Table 9. Order codes
Part number Temperature
range Package Packaging Marking
TS922ID
TS922IDT
-40°C, +125°C
SO-8 Tube or
Tape & reel
922I
TS922AID
TS922AIDT 922AI
TS922IYD(1)
TS922IYDT(1)
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
SO-8
(Automotive grade)
Tube or
Tape & reel 922IY
TS922AIYDT(1) Tape & reel 922AIY
TS922IPT TSSOP8 Tape & reel 922I
TS922AIPT 922AI
TS922IN DIP8 Tube TS922IN
TS922IYPT(2)
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are ongoing.
TSSOP8
(Automotive grade) Tape & reel 922IY
TS922AIYPT(2) 922AY
TS922IJT/EIJT Flip-chip Tape & reel 922
Revision history TS922, TS922A
20/21 Doc ID 5150 Rev 8
7 Revision history
Table 10. Document revision history
Date Revision Changes
01-Feb-2001 1 First release.
01-Jul-2004 2 Flip-chip package inserted in the document.
02-May-2005 3 Modifications in AMR Table 1 on page 3 (explanation of Vid and Vi
limits, ESD MM and CDM values added, Rthja added).
01-Aug-2005 4 PPAP references inserted in the datasheet, see Table 6 on page 19.
01-Mar-2006 5 TS922EIJT part number inserted in the datasheet, see
Table 6 on page 19.
26-Jan-2007 6
Modifications in AMR Table 1 on page 3 (Rthjc added), parameter
limits on full temperature range added in Table 3 on page 5 and
Table 4 on page 7.
12-Nov-2007 7
Added notes on ESD in AMR table.
Re-formatted package information.
Added notes for automotive grade in order codes table.
02-Feb-2010 8
Document reformatted.
Added root part number TS922A on cover page.
Removed TS922AIYD order code from Ta b le 9 .
TS922, TS922A
Doc ID 5150 Rev 8 21/21
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com