R1224N SERIES
PWM/VFM step-down DC/DC Controller
NO.EA-096-160524
1
OUTLINE
The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current.
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a
phase compensation circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable
circuit, resistors for output voltage detect, and input voltage detect circuit. A low ripple, high efficiency step-down
DC/DC converter can be easily composed of this IC with only several external components, or a power-transistor,
an inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjustable
types are without PWM/VFM alternative circuit).
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching
into the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several
types of the R1224Nxxx, which are without a PWM/VFM alternative circuit, are also available.
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The
protection circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat
this operation until maximum duty cycle condition is released. When the cause of large load current or something
else is removed, the operation is automatically released and returns to normal operation. Further, built-in UVLO
function works when the input voltage is equal or less than UVLO threshold, it makes this IC be standby and
suppresses the consumption current and avoid an unstable operation.
FEATURES
Supply Current ................................................................ Typ. 20A (R1224Nxx2E/F/M/L, R1224N102M)
Typ. 30A (R1224Nxx2G, R1224N102G)
Typ. 40A (R1224Nxx2H, R1224N102H)
Standby Current .............................................................. Typ. 0A
Input Voltage Range ....................................................... 2.3V to 18.5V
Output Voltage Range ..................................................... 1.2V to 6.0V (0.1V steps; R1224Nxx2x)
1.0V to VIN (R1224N102x)
Output Voltage Accuracy ................................................. 2.0%
Oscillator Frequency ....................................................... Typ. 180kHz (R1224Nxx2L/M, R1224N102M)
Typ. 300kHz (R1224Nxx2E/G, R1224N102G)
Typ. 500kHz (R1224Nxx2F/H, R1224N102H)
Efficiency ......................................................................... Typ. 90%
Low Temperature-Drift Coefficient of Output Voltage...... Typ. 100ppm/°C
Package .......................................................................... SOT-23-5
Built-in Soft-start Func tion ............................................... Typ. 10ms
Built-in Current Limit Circuit
APPLICATIONS
Power source for hand-held communication equipment, cameras, video instruments such as VCRs,
camcorders.
Power source for battery-powered equipment.
Power source for household electrical appliances.
R1224N
2
BLOCK DIAGRAM
Fixed Output Voltage Type
OSC
Amp
Vref
Vref
V
OUT
CE
V
IN
EXT
GND
PWM/VFM
CONTROL Soft Start
Protection Chip Enable
UVLO
5
4
2
1
3
Adjust able Output Voltage Type
OSC
Amp
Vref
Vref
V
FB
CE
V
IN
EXT
GND
Soft Start
Protection Chip Enable
UVLO
5
4
2
1
3
R1224N
3
SELECTION GUIDE
The output voltage, the oscillator frequency, the modulation method and the output voltage adjustment for the
ICs can be selected at the user’s request.
Product Name Package Quantity per Reel Pb Free Halogen Free
R1224Nxx2-TR-FE SOT-23-5 3,000 pcs Yes Yes
xx : The output voltage can be designated in the range from 1.2V(12) to 6.0V(60) in 0.1V steps.
(For externally adjustable output voltage type, feedback voltage of 1.0V(10).)
: The oscillator frequency, the modulation method and the output voltage adjustment are options as follows.
Code Oscillator frequency PWM/VFM
alternative circuit Output voltage
adjustment
E 300kHz Yes No
F 500kHz Yes No
G 300kHz No Yes
H 500kHz No Yes
L 180kHz Yes No
M 180kHz No Yes
PIN CONFIGURATION
SOT-23-5
123
4
5
(mark side)
PIN DESCRIPTION
Pin No Symbol Pin Description
1 CE Chip Enable Pin ("H" Active)
2 GND Ground Pin
3 VOUT (VFB) Pin for Monitoring Output Voltage (Feedback Voltage)
4 EXT External Transistor Drive Pin (CMOS Output)
5 VIN Power Supply Pin
R1224N
4
ABSOLUTE MAXIMUM RATINGS GND=0V
Symbol Item Rating Unit
VIN VIN Supply Voltage 0.3 to 20 V
VEXT EXT Pin Output Voltage 0.3 to VIN0.3 V
VCE CE Pin Input Voltage 0.3 to VIN0.3 V
VOUT/VFB VOUT/VFB Pin Input Voltage 0.3 to VIN0.3 V
IEXT EXT Pin Inductor Drive Output Current 50 mA
PD Power Dissipation (SOT-23-5) 420 mW
Topt Operating Temperature Range 40 to 85 C
Tstg Storage Temperature Range 55 to 125 C
) For Power Dissipation, please refer to PACKAGE INFORMATION.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the
permanent damages and may degrade the life time and safety for both device and system using the device
in the field.
The functional operation at or over these absolute maximum ratings is not assured.
R1224N
5
ELECTRICAL CHARACTERISTICS
R1224Nxx2x (x=E/F/G/H/L/M) except R1224N102x Topt=25C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.3 18.5 V
VOUT Step-down Output Voltage VIN
VCE
VSET
1.5V, IOUT
100mA
When VSET1.5V, VINVCE3.0V
VSET
0.98 VSET VSET
1.02 V
VOUT/
Topt
Step-down Output Voltage
Temperature Coefficient 40°CTopt85°C 100 ppm/°C
fosc Oscillator Frequency
VINVCEVSET1.5V, IOUT100mA
L/M Version
E/G Version
F/H Version
144
240
400
180
300
500
216
360
600
kHz
fosc/
Topt
Oscillator Frequency
Temperature Coefficient 40°CTopt85°C 0.2 %/°C
IDD1 Supply Current 1
VIN
VCE
VOUT
18.5V
E/F/L/M Version
G version
H version
20
30
40
50
60
80
A
Istandby Standby Current VIN18.5V, VCE0V, VOUT0V 0 0.5
A
IEXTH EXT "H" Output Current VIN
8V, VEXT
7.9V, VOUT
8V,
VCE8V 17 10 mA
IEXTL EXT "L" Output Current VIN
8V, VEXT
0.1V, VOUT
0V,
VCE8V 20 30 mA
ICEH CE "H" Input Current VINVCEVOUT18.5V 0 0.5
A
ICEL CE "L" Input Current VINVOUT18.5V, VCE0V 0.5 0
A
VCEH CE "H" Input Voltage VIN8V, IOUT10mA 1.5 V
VCEL CE "L" Input Voltage VIN8V, IOUT10mA 0.3 V
Maxduty Oscillator Maximum
Duty Cycle 100 %
VFMdty VFM Duty Cycle E/F/L Version 35 %
VUVLO1 UVLO Voltage VINVCE2.5V to 1.5V, VOUT0V 1.8 2.0 2.2 V
VUVLO2 UVLO Release Voltage VINVCE1.5V to 2.5V, VOUT0V VUVLO1
0.1 2.3 V
tstart Delay Time by Soft-Start function VIN
VSET
1.5V, IOUT
10mA
VCE0VVSET1.5V 5 10 20 ms
tprot Delay Time for protection circuit VIN
VCE
VSET
1.5V
VOUTVSET1.5V0V 5 15 30 ms
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the
recommended operating conditions, even if when they are used over such conditions by momentary
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue
to operate over the recommended operating conditions.
R1224N
6
R1224N102x (x=G/H/M) Topt=25C
Symbol Item Conditions Min. Typ. Max. Unit
VIN Operating Input Voltage 2.3 18.5 V
VFB Feedback Voltage VINVCE3.0V, IOUT100mA 0.98 1.00 1.02 V
VFB/
Topt
Feedback Voltage
Temperature Coefficient 40°CTopt85°C 100 ppm/°C
fosc Oscillator Frequency
VIN
VCE
2.5V, IOUT
100mA
M Version
G Version
H Version
144
240
400
180
300
500
216
360
600
kHz
fosc/
Topt
Oscillator Frequency
Temperature Coefficient 40°CTopt85°C 0.2 %/°C
IDD1 Supply Current 1
VIN
VCE
VFB
18.5V
M Version
G Version
H Version
20
30
40
50
60
80
A
Istandby Standby Current VIN18.5V, VCE0V, VFB0V 0 0.5
A
IEXTH EXT "H" Output Current VIN
8V, VEXT
7.9V, VFB
8V,
VCE8V 17 10 mA
IEXTL EXT "L" Output Current VIN
8V, VEXT
0.1V, VFB
0V,
VCE8V 20 30 mA
ICEH CE "H" Input Current VINVCEVFB18.5V 0 0.5
A
ICEL CE "L" Input Current VINVFB18.5V, VCE0V 0.5 0
A
VCEH CE "H" Input Voltage VIN8V, IOUT10mA 1.5 V
VCEL CE "L" Input Voltage VIN8V, IOUT10mA 0.3 V
Maxduty Oscillator Maximum Duty Cycle 100 %
VUVLO1 UVLO Voltage VINVCE2.5V to 1.5V, VFB0V 1.8 2.0 2.2 V
VUVLO2 UVLO Release Voltage VINVCE1.5V to 2.5V, VFB0V VUVLO1
0.1 2.3 V
tstart Delay Time by Soft-Start function VIN
2.5V, IOUT
10mA
VCE0V2.5V 5 10 20 ms
tprot Delay Time for protection circuit VIN
VCE
2.5V
VFB2.5V0V 5 15 30 ms
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the
recommended operating conditions, even if when they are used over such conditions by momentary
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue
to operate over the recommended operating conditions.
R1224N
7
TYPICAL APPLICATION AND APPLICATION HINTS
(1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M excep t xx=10)
CE CONTROL
R1224N
EXT
GND
V
OUT
V
IN
CE C3
L
LOAD
C1
R1
C2
PMOS
SD
5
1
2
3
4
PMOS: uPA1914 (Renesas) L : CR105NP-270MC (Sumida, 27H)
SD1 : CMS06 (TOSHIBA) C3 : 47F (Tantalum Type)
C1 : 10F (Ceramic Type) C2 : 0.1F (Ceramic Type)
R1 : 10
(2) Adjustable Output Type (R12 24N102G/H/M) Example: Output Voltage=3.2V
CE CONTROL
C3
L
LOAD
C1
R1
C2
PMOS
SD
C4
R3
R4
R2
R1224N
EXT
GND
V
FB
V
IN
CE
5
1
2
3
4
PMOS: uPA1914 (Renesas) L : CR105NP-270MC (Sumida, 27H)
SD1 : CMS06 (TOSHIBA) C3 : 47F (Tantalum Type)
C1 : 10F (Ceramic Type) C2 : 0.1F (Ceramic Type) C4: 1000pF (Ceramic Type)
R1 : 10, R2=22k, R3=2.7k, R4=33k
R1224N
8
When you use these ICs, consider the following issues;
As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do
not make its “H” level more than the voltage level of VIN pin.
Set external components as close as possible to the IC and minimize the connection between the components
and the IC. In particular, a capacitor should be connected to VIN pin with the minimum connection. Make
sufficient ground and reinforce supplying. A large switching current could flow through the connection of power
supply, an inductor and the connection of VIN. If the impedance of the connection of power supply is high, the
voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation
of the IC.
Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical
characteristics. Once after stopping the output voltage, output will restart with soft-start operation. If the
difference between input voltage and output voltage is small, the protection circuit may work.
Use capacitors with a capacity of 22F or more for VOUT pin, and with good high frequency characteristics such
as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is
generated by an inductor when an external transistor is on and off.
Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the
absolute maximum rating at the maximum loading.
Use an inductor with appropriate inductance.
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.
Do not use this IC under the condition with VIN voltage at equal or less than minimum operating voltage.
When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is
small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this
case, the devise is reset with UVLO function that is different from the reset-protection function caused by
maximum duty cycle.
With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1224N alters
from PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light
load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage
against input voltage is 35% or less, (ex. VIN>8.6V and VOUT=3.0V) even if the large current may be loaded, the
IC keeps its VFM mode. As a result, frequency might be decreased, and oscillation waveform might be unstable.
These phenomena are the typical characteristics of the IC with PWM/VFM alternative circuit.
If the input voltage is equal or more than 6V, R1 and C2 in the typical application are necessary as a VIN filter to
prevent unstable operation.
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their
respected rated values.
R1224N
9
How to Adjust Output Voltage and about Phase Compensation
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 1.0V.
Output Voltage, VOUT is as following equation:
V
OUT: R2R4VFB: R2
V
OUTVFB(R2R4)/R2
Thus, with changing the value of R2 and R4, output voltage can be set in the specified range.
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind
180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this,
phase margin should be secured with proceeding the phase. A pole is formed with external components L and
C3.
C3L1/2 ~ Fpole
A zero (signal back to zero) is formed with R4 and C4.
Fzero~1/(2R4C4)
For example, if L27H, C347µF, the cut off frequency of the pole is approximately 4.5kHz.
To make the cut off frequency of the pole as much as 4.5kHz, set R433k and C41000pF.
If VOUT is set at 2.5V, R222k is appropriate.
R3 prevents feedback of the noise to VFB pin, about 2.7k is appropriate value.
CE CONTROL
C3
L
LOAD
C1
R1
C2
PMOS
SD
C4
R3
R4
R2
R1224N
EXT
GND
V
FB
V
IN
CE
5
1
2
3
4
R1224N
10
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits> <Current through L>
IOUT
Lx Tr L
SD
VIN
i1
VOUT
CL
i2
GND
T
1/fosc
ton toff
topen
ILmin
ILmax
IL
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases
from ILmin. (=0) to reach ILmax. in proportion to the on-time period (ton) of Lx Tr.
Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL
(=i2) flows.
Step 3: IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in
the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this
case, IL value is from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with
the oscillator frequency (fosc) being maintained constant.
Discontinuous Conduction Mode and Continuous Conduction Mode
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the
same as those when Lx Tr. is ON and when it is OFF.
The difference between ILmax and ILmin, which is represented by I;
IILmax-ILminVOUTtopen/L(VIN-VOUT)ton/L ................................... Equation 1
wherein, T1/foscton+toff
duty (%)ton/T100tonfosc100
topen
toff
In Equation 1, VOUTtopen/L and (VIN-VOUT)ton/L are respectively shown the change of the current at ON, and
the change of the current at OFF.
When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time
period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.
R1224N
11
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,
toncTVOUT/VIN ..................................................................................... Equation 2
When ton<tonc, the mode is the discontinuous mode, and when tontonc, the mode is the continuous mode.
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is ON:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of Lx Tr. is described as Rp the direct
current of the inductor is described as RL.)
VINVOUT(RpRL)IOUTLIRP/ton ................................................. Equation 3
When Lx Tr. is OFF:
LIRP/toffVFVOUTRLIOUT ............................................................ Equation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)DON,
DON(VOUTVFRLIOUT)/(VINVFRpIOUT) ...................................... Equation 5
Ripple Current is as follows;
IRP(VINVOUTRpIOUTRLIOUT)DON/f/L ........................................ Equation 6
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;
ILmaxIOUTIRP/2 ............................................................................ Equation 7
Consider ILmax, condition of input and output and select external components.
The above explanation is directed to the calculation in an ideal case in continuous mode.
R1224N
12
External Components
1. Inductor
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,
magnetic saturation occurs and make transform efficiency worse.
When the load current is definite, the smaller value of L, the larger the ripple current.
Provided that the allowable current is large in that case and DC current is small, therefore, for large output
current, efficiency is better than using an inductor with a large value of L and vice versa.
2. Diode
Use a diode with low VF (Schottky type is recommended.) and high switching speed.
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.
3. Capacitors
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for
stable operation.
COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is
recommended.
4. Lx Transistor
Pch Power MOSFET is required for this IC.
Its breakdown voltage between gate and source should be a few V higher than Input Voltage.
In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold
voltage is effective.
If a large load current is necessary for your application and important, choose a MOSFET with low ON
resistance for good efficiency.
If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for
good efficiency.
Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.
R1224N
13
TIMING CHART
V
OUT
Set Output Voltage
UVLO Voltage
Input Voltage
Rising Time
UVLO Reset
V
OUT
Set Output Voltage
Protection Circuit Delay Time
V
OUT
Set Output
Voltage
V
IN
CE
EXT
V
OUT
V
OUT
Set Output
Voltage
Stable
Operation
Stable
Operation
Stable
Operation
Soft Start Soft Start Soft Start Soft Start
Reset Protection
The timing chart shown above describes the changing process of input voltage rising, stable operating,
operating with large current, stable operating, input voltage falling, input voltage recovering, and stable
operating.
First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of
pre-standby.
Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start
operation finishes, the operation becomes stable.
If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during
the delay time of protection circuit. (The current value depends on the circuit.)
After the delay time passes, reset protection works, or EXT signal will be “H”, then output will turn off, then
soft-start operation starts. After the soft-start operation, EXT signal will be “L”, but if the large current is still
flowing, after the delay time of protection circuit passes, reset protection circuit will work again, the operation will
be continuously repeated unless the cause of large current flowing is not removed.
Once the cause of the large current flowing is removed, within the delay time, the operation will be back to the
stable one.
If the timing for release the large current is in the protection process, the operation will be back to the normal
one after the soft-start operation.
If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection
circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be “H”.
Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function.
After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of
spre-standby.
Then after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation
finishes, the operation becomes stable.
R1224N
14
TEST CIRCUITS
Output Voltage, Oscillator Frequency, CE “H” Input Voltage, CE “L” Input Voltage, Soft-start time
R1224N
EXT
GND
V
OUT
V
IN
CE
D1
C1
PMOS
V
Oscilloscope
C2
(V
FB
)
2
31
5
4
L1
Supply Current 1 Standby Current
A
R1224N
GND
V
OUT
V
IN
CE
(V
FB
)
2
3 1
5
A
R1224N
GND
V
OUT
V
IN
CE
(V
FB
)
2
31
5
EXT “H” Output Cu rrent EXT “L” Output Current
A R1224N
GND
V
OUT
V
IN
CE
(V
FB
)
EXT
2
3 1
5 4
AR1224N
GND
V
OUT
V
IN
CE
(V
FB
)
EXT
2
31
5 4
CE “H” Input Current, CE “L” Input Current Output Delay Ti me for Protection Circuit
A
R1224N
GND
V
OUT
V
IN
CE
(V
FB
)
2
3 1
5
R1224N
GND
VOUT
VIN
CE
(VFB)
EXT
Oscilloscope
C2
2
31
5 4
PMOS : HAT1044M (Hitachi) L : CD104-270MC (Sumida, 27H)
SD1 : RB491D (Rohm)
C1 : 47F (Tantalum Type) C2 : 47F (Tantalum Type)
R1224N
15
TYPICAL CHARACTERISTICS
1)Output Voltage vs. Output Current (*Note)
R1224N182E L=10µH R1224N182F L=10µH
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
V
IN
5V
V
IN
3.3V
1.850
1.770
1.790
1.810
1.830
1.750
Output Voltage V
OUT
(V)
V
IN
5V
V
IN
3.3V
Output Current I
OUT
(mA)
0.1 1 10 100001000100
R1224N182G L=10µH R1224N182H L=10µH
1.830
1.850
1.810
1.790
1.770
1.750
Output Current lOUT(mA)
Output Voltage VOUT(V)
0.1 1 10 100 1000 10000
VIN12V
VIN5V
VIN3.3V
1.830
1.850
1.810
1.790
1.770
1.750
Output Current lOUT(mA)
Output Voltage VOUT(V)
0.1 1 10 100 1000 10000
VIN12V
VIN5V
VIN3.3V
R1224N182L L=27µH R1224N182M L=27µH
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
V
IN
5V
V
IN
3.3V
1.830
1.850
1.810
1.790
1.770
1.750
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
V
IN
12V
V
IN
5V
V
IN
3.3V
R1224N
16
R1224N332E L=10µH R1224N332F L=10µH
3.34
3.40
3.30
3.28
3.24
3.20
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.38
3.36
3.32
3.26
3.22
Output Current l
OUT
(mA)
V
IN
7V
V
IN
4.8V
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
V
IN
7V
V
IN
4.8V
R1224N332G L=10µH R1224N332G (VIN=10V)
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage VOUT(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current lOUT(mA)
VIN15V
VIN12V
VIN4.8V
3.32
3.35
3.30
Output Current lOUT(mA)
Output Voltage VOUT(V)
0.1 1 10 100 1000 10000
3.34
3.33
3.31
R1224N332G (VIN=16V) R1224N332H L=10µH
3.32
3.35
3.30
Output Current l
OUT
(mA)
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.34
3.33
3.31
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
V
IN
15V
V
IN
12V
V
IN
4.8V
R1224N
17
R1224N332L L=27µH R1224N332M L=27µH
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
V
IN
7V
V
IN
4.8V
3.340
3.400
3.300
3.280
3.240
3.200
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
3.380
3.360
3.320
3.260
3.220
Output Current l
OUT
(mA)
V
IN
15V
V
IN
12V
V
IN
4.8V
R1224N332M (VIN=5V) R1224N332M (VIN=10V)
3.32
3.35
3.30
Output Voltage VOUT(V)
3.34
3.33
3.31
Output Current l
OUT(A)
012345
3.32
3.35
3.30
Output Voltage VOUT(V)
3.34
3.33
3.31
Output Current lOUT(A)
012345
R1224N332M (VIN=18V) R1224N502E L=10µH
3.32
3.35
3.30
Output Voltage V
OUT
(V)
3.34
3.33
3.31
Output Current l
OUT
(A)
01234
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
10V
V
IN
6.5V
R1224N
18
R1224N502F L=10µH R1224N502G L=10µH
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
10V
V
IN
6.5V
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
15V
V
IN
12V
V
IN
6.5V
R1224N502G (VIN=10V) R1224N502G (VIN=16V)
5.02
5.05
5.000.1 1 10 100 1000 10000
5.04
5.03
5.01
Output Voltage VOUT(V)
Output Current lOUT(mA)
5.02
5.05
5.00
Output Current lOUT(mA)
Output Voltage VOUT(V)
0.1 1 10 100 1000 10000
5.04
5.03
5.01
R1224N502H L=10µH R1224N502L L=27µH
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
15V
V
IN
12V
V
IN
6.5V
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1
1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
10V
V
IN
6.5V
R1224N
19
R1224N502M L=27µH
5.040
5.100
5.000
4.980
4.940
4.900
Output Voltage V
OUT
(V)
0.1 1 10 100 1000 10000
5.080
5.060
5.020
4.960
4.920
Output Current l
OUT
(mA)
V
IN
15V
V
IN
12V
V
IN
6.5V
*Note: Typical characteristics 1) are obtained with using
the following components;
PMOS : IRF7406 (IR)
L : CDRH127-100MC (Sumida: 10µH)
SD : RB083L-20 (Rohm)
C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)2
C2 : 0.1µF (Ceramic Type)
C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)
R1 : 10
2) Efficiency vs. Output Current (*Note)
R1224N182F (VIN=3.3V) CDRH127-10µH R1224N182F (VIN=5.0V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182G (VIN=3.3V) CDRH127-10µH R1224N182G (VIN=5.0V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
R1224N
20
R1224N182G (VIN=12V) CDRH127-10µH R1224N182H (VIN=3.3V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182H (VIN=5.0V) CDRH127-10µH R1224N182H (VIN=12V) CDRH127-10µH
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182L (VIN=3.3V) CDRH127-27µH R1224N182L (VIN=5.0V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
21
R1224N182M (VIN=3.3V) CDRH127-27µH R1224N182M (VIN=5.0V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N182M (VIN=12V) CDRH127-27µH R1224N332E (VIN=7.0V) CDRH127-10µH
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332E (VIN=4.8V) CDRH127-10µH R1224N332F (VIN=7.0V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
22
R1224N332F (VIN=4.8V) CDRH127-10µH R1224N332G (VIN=12V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332G (VIN=4.8V) CDRH127-10µH R1224N332G (VIN=10V)
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332G (VIN=16V) R1224N332G (VIN=15V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
23
R1224N332H (VIN=12V) CDRH127-10µH R1224N332H (VIN=4.8V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332H (VIN=15V) CDRH127-10µH R1224N332L (VIN=7.0V) CDRH127-27µH
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N332L (VIN=4.8V) CDRH127-27µH R1224N332M (VIN=12V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
24
R1224N332M (VIN=4.8V) CDRH127-27µH R1224N332M (VIN=5V)
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(A)
012345
86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84
R1224N332M (VIN=10V) R1224N332M (VIN=18V)
Output Current lOUT(A)
012345
86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84
86
88
100
98
80
Efficiency η(%)
94
96
90
92
82
84
Output Current l
OUT(A)
01234
R1224N332M (VIN=15V) CDRH127-27µH R1224N502E (VIN=6.5V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
25
R1224N502E (VIN=10V) CDRH127-10µH R1224N502F (VIN=6.5V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502F (VIN=10V) CDRH127-10µH R1224N502G (VIN=10V)
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502G (VIN=16V) R1224N502G (VIN=6.5V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
26
R1224N502G (VIN=12V) CDRH127-10µH R1224N502G (VIN=15V) CDRH127-10µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502H (VIN=6.5V) CDRH127-10µH R1224N502H (VIN=12V) CDRH127-10µH
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502H (VIN=15V) CDRH127-10µH R1224N502L (VIN=6.5V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N
27
R1224N502L (VIN=10V) CDRH127-27µH R1224N502M (VIN=6.5V) CDRH127-27µH
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current l
OUT
(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
R1224N502M (VIN=12V) CDRH127-27µH R1224N502M (VIN=15V) CDRH127-27µH
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
Output Current lOUT(mA)
0.1 1 10 100 1000 10000
30
40
100
90
0
Efficiency η(%)
70
80
50
60
10
20
*Note: Typical characteristics 2) are obtained with using the following components;
PMOS : IRF7406 (IR)
L : CDRH127-100MC (Sumida: 10µH) C2 : 0.1µF (Ceramic Type)
SD : RB083L-20 (Rohm) C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)
C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)2 R1 : 10
R1224N
28
3) Ripple Voltage vs. Output Current
R1224N182E L=10µH R1224N182F L=10µH
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
5V
V
IN
3.3V
R1224N182G L=10µH R1224N182H L=10µH
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
R1224N182L L=27µH R1224N182M L=27µH
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
5V
V
IN
3.3V
V
IN
12V
V
IN
5V
V
IN
3.3V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
R1224N
29
R1224N332E L=10µH R1224N332F L=10µH
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
7V
V
IN
4.8V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
7V
V
IN
4.8V
R1224N332G L=10µH R1224N332H L=10µH
60
70
50
40
30
20
10
0
Output Current lOUT(mA)
Ripple Voltage Vrpp(mV)
0.1 110
100 1000 10000
VIN15V
VIN12V
VIN4.8V
60
70
50
40
30
20
10
0
Output Current lOUT(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
VIN15V
VIN12V
VIN4.8V
R1224N332L L=27µH R1224N332M L=27µH
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
V
IN
7V
V
IN
4.8V
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
V
IN
15V
V
IN
12V
V
IN
4.8V
R1224N
30
R1224N502E L=10µH R1224N502F L=10µH
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
V
IN
10V
V
IN
6.5V
60
70
50
40
30
20
10
0
Output Current l
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100 1000 10000
V
IN
10V
V
IN
6.5V
R1224N502G L=10µH R1224N502H L=10µH
70
30
40
50
60
20
10
0
Output Current IOUT(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
VIN15V
VIN12V
VIN6.5V
70
30
40
50
60
20
10
0
Output Current IOUT(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
VIN15V
VIN12V
VIN6.5V
R1224N502L L=27µH R1224N502M L=27µH
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
10V
V
IN
6.5V
70
30
40
50
60
20
10
0
Output Current I
OUT
(mA)
Ripple Voltage Vrpp(mV)
0.1 1 10 100001000100
V
IN
15V
V
IN
12V
V
IN
6.5V
R1224N
31
4) Output Voltage vs. Input Voltage
R1224N182E L=10µH R1224N182F L=10µH
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
R1224N182G L=10µH R1224N182H L=10µH
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
-1mA
-500mA
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
-1mA
-500mA
R1224N182L L=27µH R1224N182M L=27µH
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage VIN(V)
Output Voltage VOUT(V)
0 5 10 15 20
1mA
500mA
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
Input Voltage VIN(V)
Output Voltage VOUT(V)
0 5 10 15 20
1mA
500mA
R1224N
32
R1224N332E L=10µH R1224N332F L=10µH
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
R1224N332G L=10µH R1224N332H L=10µH
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage VIN(V)
Output Voltage VOUT(V)
0 5 10 15 20
-1mA
-500mA
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage VIN(V)
Output Voltage VOUT(V)
0 5 10 15 20
-1mA
-500mA
R1224N332L L=27µH R1224N332M L=27µH
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
3.40
3.34
3.36
3.38
3.32
3.30
3.28
3.26
3.24
3.22
3.20
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
R1224N
33
R1224N502E L=10µH R1224N502F L=10µH
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
R1224N502G L=10µH R1224N502H L=10µH
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN(V)
Output Voltage VOUT(V)
0 5 10 15 20
-1mA
-500mA
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
0 5 10 15 20
-1mA
-500mA
R1224N502L L=27µH R1224N502M L=27µH
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
5.20
5.15
5.10
5.05
5.00
4.95
4.90
4.85
4.80
Input Voltage V
IN
(V)
Output Voltage V
OUT
(V)
0 5 10 15 20
1mA
500mA
R1224N
34
5) Output Voltage vs. Temperature
R1224N332E R1224N122F
3.33
3.32
3.31
3.30
3.29
3.28
3.27
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
1.210
1.205
1.200
1.195
1.190
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
R1224N602L R1224N102G
6.10
6.05
6.00
5.95
5.90
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
1.010
1.005
1.000
0.995
0.990
Temperature Topt(˚C)
Output Voltage V
OUT
(V)
-40 10 6035-15 85
6) Oscillator Frequency vs. Temperature
R1224N102G R1224N102H
360
330
300
270
240
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 6035-15 85
600
550
500
450
400
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 35-15 60 85
R1224N
35
R1224N102M
216
198
180
162
144
Temperature Topt(˚C)
Oscillator Frequency fosc(kHz)
-40 10 6035-15 85
7) Supply Current vs. Temperature
R1224N332E R1224N602L
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
R1224N602F R1224N102G
25
20
15
10
5
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
R1224N
36
R1224N102H R1224N102M
60
50
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
40
30
20
10
0
Temperature Topt(˚C)
Supply Current1 Iss1(μA)
-40 10 6035-15 85
8) Soft-start time vs. Temperature
R1224N102G
15
10
5
Temperature Topt(˚C)
Soft-start time Tsoft(ms)
-40 10 6035-15 85
9) Delay Time for Protection vs. Temperature
R1224N332E
30
25
20
15
10
Temperature Topt(˚C)
-15-40 35 856010
Delay Time for Protection Tprot(ms)
R1224N
37
10) EXT “H” Output Current vs. Temperature
R1224N332E
-10
-15
-20
-25
Temperature Topt(˚C)
EXT "H" Output Current I
EXTH
(mA)
-40 10 6035-15 85
11) EXT “L” Output Current vs. Temperature
R1224N332E
50
40
30
20
Temperature Topt(˚C)
EXT "L" Output Current I
EXTL
(mA)
-40 10 6035-15 85
12) Load Transient Response
R1224N332G L=10µH VIN=4.8V R1224N332G L=10µH VIN=4.8V
Time(sec)
-0 -0 0
1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
R1224N
38
R1224N332G L=10µH VIN=10V R1224N332G L=10µH VIN=10V
Time(sec)
-0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
R1224N332H L=10µH VIN=4.8V R1224N332H L=10µH VIN=4.8V
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage V
OUT
(V)
Output Current I
OUT
(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage V
OUT
(V)
Output Current I
OUT
(mA)
R1224N332H L=10µH VIN=10V R1224N332H L=10µH VIN=10V
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
-2E-04 -1E-04 0
0.0001 0.0002 0.0003 0.0004
R1224N
39
R1224N332M L=27µH VIN=4.8V R1224N332M L=27µH VIN=4.8V
Time(sec)
-2E-04 -1E-04 0
0.0001 0.0002 0.0003 0.0004
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage VOUT(V)
Output Current IOUT(mA)
R1224N332M L=27µH VIN=10V R1224N332M L=27µH VIN=10V
Time(sec)
-2E-04 -1E-04 0 1E-04 2E-04 3E-04 4E-04
3.40
3.30
3.20
3.10
3.00
2.90
2.80
2.70
2.60
3.50
2.50
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage V
OUT
(V)
Output Current I
OUT
(mA)
Time(sec)
-0.04 -0.02 0 0.02 0.04 0.06 0.08
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.50
3.00
1800
1600
1400
1200
1000
800
600
400
200
2000
0
Output Voltage V
OUT
(V)
Output Current I
OUT
(mA)
12) UVLO Voltage vs. Temperature
R1224N332E
2.20
2.05
2.10
2.15
2.00
1.95
1.90
Temperature Topt(˚C)
-15-40 10 35 8560
UVLO Voltage V
UVLO
(V)
http://www.e-devices.ricoh.co.jp/en/
Sales&SupportOffices
RICOHELECTRONICDEVICESCO.,LTD.
Higashi-ShinagawaOffice(InternationalSales)
3-32-3,Higashi-Shinagawa,Shinagawa-ku,Tokyo140-8655,Japan
Phone:+81-3-5479-2857Fax:+81-3-5479-0502
RICOHEUROPE(NETHERLANDS)B.V.
SemiconductorSupportCentre
Prof.W.H.Keesomlaan1,1183DJAmstelveen,TheNetherlands
Phone:+31-20-5474-309
RICOHINTERNATIONALB.V.-GermanBranch
SemiconductorSalesandSupportCentre
OberratherStrasse6,40472Düsseldorf,Germany
Phone:+49-211-6546-0
RICOHELECTRONICDEVICESKOREACO.,LTD.
3F,HaesungBldg,504,Teheran-ro,Gangnam-gu,Seoul,135-725,Korea
Phone:+82-2-2135-5700Fax:+82-2-2051-5713
RICOHELECTRONICDEVICESSHANGHAICO.,LTD.
Room403,No.2Building,No.690BiboRoad,PuDongNewDistrict,Shanghai201203,
People'sRepublicofChina
Phone:+86-21-5027-3200Fax:+86-21-5027-3299
RICOHELECTRONICDEVICESCO.,LTD.
Taipeioffice
Room109,10F-1,No.51,HengyangRd.,TaipeiCity,Taiwan(R.O.C.)
Phone:+886-2-2313-1621/1622Fax:+886-2-2313-1623
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
Halogen Free
1.Theproducts andthe productspecificationsdescribedinthis documentare subjecttochangeordiscontinuation of
productionwithout noticeforreasons
suchas improvement.Therefore,before decidingto usethe products,please
refertoRicohsalesrepresentativesforthelatestinformationthereon.
2.Thematerials inthis documentmay notbe copiedor otherwisereproduced inwhole orin partwithout priorwritten
consentofRicoh.
3.Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
takingoutofyourcountrytheproductsorthetechnicalinformationdescribedherein.
4.Thetechnicalinformationdescribedinthisdocumentshowstypicalcharacteristicsofandexampleapplicationcircuits
fortheproducts.Thereleaseofsuchinformationisnottobeconstruedasawarrantyoforagrantoflicenseunder
Ricoh'soranythirdparty'sintellectualpropertyrightsoranyotherrights.
5.Theproductslistedinthisdocumentareintendedanddesignedforuseasgeneralelectroniccomponentsinstandard
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,
amusementequipment etc.).Those customersintendingto usea productin anapplicationrequiringextremequality
andreliability,forexample,inahighlyspecificapplicationwherethefailureormisoperationoftheproductcouldresult
inhumaninjuryordeath(aircraft,spacevehicle,nuclearreactorcontrolsystem,trafficcontrolsystem,automotiveand
transportationequipment,combustionequipment,safetydevices,lifesupportsystemetc.)shouldfirstcontactus.
6.Wearemakingourcontinuousefforttoimprovethequalityandreliabilityofourproducts,butsemiconductorproducts
arelikelytofailwithcertainprobability.Inordertopreventanyinjurytopersonsordamagestopropertyresultingfrom
suchfailure,customersshouldbecarefulenoughtoincorporatesafetymeasuresintheirdesign,suchasredundancy
feature,firecontainmentfeatureandfail-safefeature.Wedonotassumeanyliability
orresponsibilityforanylossor
damagearisingfrommisuseorinappropriateuseoftheproducts.
7.Anti-radiationdesignisnotimplementedintheproductsdescribedinthisdocument.
8.The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristicsintheevaluationstage.
9.WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristicsoftheproductsunderoperationorstorage.
10.There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the
caseofrecognizingthemarkingcharacteristicwithAOI,pleasecontactRicohsalesorourdistributorbeforeattempting
touseAOI.
11.
PleasecontactRicohsalesrepresentativesshouldyouhaveanyquestionsorcommentsconcerningtheproductsor
thetechnicalinformation.