PD -93906C IRFP2907 AUTOMOTIVE MOSFET HEXFET(R) Power MOSFET Typical Applications l l Benefits l l l l l l D Integrated Starter Alternator 42 Volts Automotive Electrical Systems Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax RDS(on) = 4.5m G Absolute Maximum Ratings D G VGS EAS IAR EAR dv/dt TJ TSTG D S TO-247AC G D S Gate Drain Source Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C ID = 209A S Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET(R) Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. VDSS = 75V Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Units 209 148 840 470 3.1 20 1970 See Fig.12a, 12b, 15, 16 5.0 -55 to + 175 A W W/C V mJ A mJ V/ns C 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient www.irf.com Typ. Max. Units --- 0.24 --- 0.32 --- 40 C/W 1 05/04/10 http://store.iiic.cc/ IRFP2907 Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 75 --- --- 2.0 130 --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.085 3.6 --- --- --- --- --- --- 410 92 140 23 190 130 130 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance --- 5.0 LS Internal Source Inductance --- 13 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance --- 13000 --- 2100 --- 500 --- 9780 --- 1360 --- 2320 V(BR)DSS V(BR)DSS/TJ IGSS Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 4.5 m VGS = 10V, ID = 125A 4.0 V VDS = 10V, ID = 250A --- S VDS = 25V, ID = 125A 20 VDS = 75V, VGS = 0V A 250 VDS = 60V, VGS = 0V, TJ = 150C 200 VGS = 20V nA -200 VGS = -20V 620 ID = 125A 140 nC VDS = 60V 210 VGS = 10V --- VDD = 38V --- ID = 125A ns --- RG = 1.2 --- VGS = 10V D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 60V, = 1.0MHz --- VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol --- --- 209 showing the A G integral reverse --- --- 840 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 125A, VGS = 0V --- 140 210 ns TJ = 25C, IF = 125A --- 880 1320 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25C, L = 0.25mH RG = 25, IAS = 125A. (See Figure 12). ISD 125A, di/dt 260A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A. Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. 2 www.irf.com http://store.iiic.cc/ IRFP2907 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 100 10 4.5V 20s PULSE WIDTH TJ = 25 C 1 0.1 1 10 4.5V 10 0.1 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 TJ = 175 C 100 TJ = 25 C 10 V DS = 25V 20s PULSE WIDTH 6.0 7.0 8.0 9.0 10 100 Fig 2. Typical Output Characteristics 1000 5.0 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 1 4.0 20s PULSE WIDTH TJ = 175 C 10.0 ID = 209A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( C) Fig 4. Normalized On-Resistance Vs. Temperature 3 http://store.iiic.cc/ IRFP2907 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) 16000 Coss = Cds + Cgd Ciss 12000 8000 4000 Coss VGS , Gate-to-Source Voltage (V) 20 20000 ID = 125A VDS = 60V VDS = 37V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 1 10 0 100 0 400 500 600 700 10000 ID, Drain-to-Source Current (A) 1000 ISD , Reverse Drain Current (A) 300 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage TJ = 175 C 10 TJ = 25 C 1 0.1 0.0 200 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 100 100 V GS = 0 V 0.5 1.0 1.5 2.0 2.5 3.0 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 100 100sec 10 1msec 1 Tc = 25C Tj = 175C Single Pulse 10msec DC 0.1 0.1 VSD ,Source-to-Drain Voltage (V) 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com http://store.iiic.cc/ IRFP2907 240 200 ID , Drain Current (A) RD VDS LIMITED BY PACKAGE VGS D.U.T. RG + -VDD 160 10V 120 Pulse Width 1 s Duty Factor 0.1 % 80 Fig 10a. Switching Time Test Circuit 40 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( C) 175 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 http://store.iiic.cc/ IRFP2907 D.U.T RG + - VDD IAS 20V 0.01 tp ID 51A 88A BOTTOM 125A TOP 4000 DRIVER L VDS EAS , Single Pulse Avalanche Energy (mJ) 5000 15V 3000 A 2000 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS 1000 tp 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50K 12V .2F VGS(th) , Variace ( V ) 3.5 3.0 ID = 250A 2.5 2.0 1.5 .3F D.U.T. + V - DS 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com http://store.iiic.cc/ IRFP2907 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 2000 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 125A 1600 1200 800 400 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav 7 http://store.iiic.cc/ IRFP2907 Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + - - + RG * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple 5% [ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET(R) power MOSFETs 8 www.irf.com http://store.iiic.cc/ IRFP2907 TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/