ON Semiconductor Amplifier Transistors P2N2222A NPN Silicon MAXIMUM RATINGS Rating Symbol Value Unit Collector-Emitter Voltage VCEO 40 Vdc Collector-Base Voltage VCBO 75 Vdc Emitter-Base Voltage VEBO 6.0 Vdc Collector Current -- Continuous IC 600 mAdc Total Device Dissipation @ TA = 25C Derate above 25C PD 625 5.0 mW mW/C Total Device Dissipation @ TC = 25C Derate above 25C PD 1.5 12 Watts mW/C TJ, Tstg -55 to +150 C Symbol Max Unit Thermal Resistance, Junction to Ambient RJA 200 C/W Thermal Resistance, Junction to Case RJC 83.3 C/W Operating and Storage Junction Temperature Range 1 2 3 CASE 29-11, STYLE 17 TO-92 (TO-226AA) THERMAL CHARACTERISTICS Characteristic COLLECTOR 1 2 BASE 3 EMITTER ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Symbol Min Max Unit Collector-Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0) V(BR)CEO 40 -- Vdc Collector-Base Breakdown Voltage (IC = 10 Adc, IE = 0) V(BR)CBO 75 -- Vdc Emitter-Base Breakdown Voltage (IE = 10 Adc, IC = 0) V(BR)EBO 6.0 -- Vdc Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) ICEX -- 10 nAdc Collector Cutoff Current (VCB = 60 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0, TA = 150C) ICBO -- -- 0.01 10 Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0) IEBO -- 10 nAdc Collector Cutoff Current (VCE = 10 V) ICEO -- 10 nAdc Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) IBEX -- 20 nAdc Characteristic OFF CHARACTERISTICS Semiconductor Components Industries, LLC, 2001 March, 2001 - Rev. 1 1 Adc Publication Order Number: P2N2222A/D P2N2222A ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued) Symbol Min Max 35 50 75 35 100 50 40 -- -- -- -- 300 -- -- -- -- 0.3 1.0 0.6 -- 1.2 2.0 fT 300 -- MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cobo -- 8.0 pF Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Cibo -- 25 pF 2.0 0.25 8.0 1.25 -- -- 8.0 4.0 50 75 300 375 5.0 25 35 200 Characteristic Unit ON CHARACTERISTICS DC Current Gain (IC = 0.1 mAdc, VCE = 10 Vdc) (IC = 1.0 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc, TA = -55C) (IC = 150 mAdc, VCE = 10 Vdc)(1) (IC = 150 mAdc, VCE = 1.0 Vdc)(1) (IC = 500 mAdc, VCE = 10 Vdc)(1) hFE Collector-Emitter Saturation Voltage(1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VCE(sat) Base-Emitter Saturation Voltage(1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VBE(sat) -- Vdc Vdc SMALL-SIGNAL CHARACTERISTICS Current-Gain -- Bandwidth Product(2) (IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz) Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hie Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hre Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hoe Collector Base Time Constant (IE = 20 mAdc, VCB = 20 Vdc, f = 31.8 MHz) rbCc -- 150 ps NF -- 4.0 dB (VCC = 30 Vdc, VBE(off) = -2.0 2.0 Vdc, IC = 150 mAdc, IB1 = 15 mAdc) (Figure 1) td -- 10 ns tr -- 25 ns (VCC = 30 Vdc, IC = 150 mAdc, IB1 = IB2 = 15 mAdc) Ad ) (Figure (Fi 2) ts -- 225 ns tf -- 60 ns Noise Figure (IC = 100 Adc, VCE = 10 Vdc, RS = 1.0 k, f = 1.0 kHz) k X 10-4 -- mhos SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time 1. Pulse Test: Pulse Width 300 s, Duty Cycle 2.0%. 2. fT is defined as the frequency at which |hfe| extrapolates to unity. http://onsemi.com 2 P2N2222A SWITCHING TIME EQUIVALENT TEST CIRCUITS +30 V +30 V 1.0 to 100 s, DUTY CYCLE 2.0% +16 V 0 -2 V 200 0 1 k < 2 ns 1.0 to 100 s, DUTY CYCLE 2.0% +16 V CS* < 10 pF -14 V < 20 ns 1k -4 V Figure 2. Turn-Off Time 1000 700 500 hFE , DC CURRENT GAIN CS* < 10 pF 1N914 Scope rise time < 4 ns *Total shunt capacitance of test jig, connectors, and oscilloscope. Figure 1. Turn-On Time 200 TJ = 125C 300 200 25C 100 70 50 -55C 30 VCE = 1.0 V VCE = 10 V 20 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 200 300 500 700 1.0 k VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 3. DC Current Gain 1.0 TJ = 25C 0.8 0.6 IC = 1.0 mA 10 mA 150 mA 500 mA 0.4 0.2 0 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 IB, BASE CURRENT (mA) 2.0 Figure 4. Collector Saturation Region http://onsemi.com 3 3.0 5.0 10 20 30 50 P2N2222A 200 100 70 50 tr @ VCC = 30 V td @ VEB(off) = 2.0 V td @ VEB(off) = 0 30 20 10 7.0 5.0 200 ts = ts - 1/8 tf 100 70 50 tf 30 20 10 7.0 5.0 3.0 2.0 5.0 7.0 10 200 300 20 30 50 70 100 IC, COLLECTOR CURRENT (mA) 500 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 5. Turn-On Time 6.0 f = 1.0 kHz 8.0 4.0 2.0 IC = 50 A 100 A 500 A 1.0 mA 6.0 4.0 2.0 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k RS, SOURCE RESISTANCE (OHMS) Figure 7. Frequency Effects Figure 8. Source Resistance Effects Ceb 10 7.0 5.0 Ccb 3.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 REVERSE VOLTAGE (VOLTS) 20 30 50 f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz) f, FREQUENCY (kHz) 20 0.2 0.3 0 50 50 100 20 30 CAPACITANCE (pF) 500 10 RS = OPTIMUM RS = SOURCE RS = RESISTANCE IC = 1.0 mA, RS = 150 500 A, RS = 200 100 A, RS = 2.0 k 50 A, RS = 4.0 k 8.0 300 Figure 6. Turn-Off Time NF, NOISE FIGURE (dB) NF, NOISE FIGURE (dB) 10 2.0 0.1 VCC = 30 V IC/IB = 10 IB1 = IB2 TJ = 25C 300 t, TIME (ns) t, TIME (ns) 500 IC/IB = 10 TJ = 25C 500 VCE = 20 V TJ = 25C 300 200 100 70 50 1.0 Figure 9. Capacitances 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 Figure 10. Current-Gain Bandwidth Product http://onsemi.com 4 P2N2222A 1.0 +0.5 TJ = 25C 0 VBE(sat) @ IC/IB = 10 0.6 COEFFICIENT (mV/ C) V, VOLTAGE (VOLTS) 0.8 1.0 V VBE(on) @ VCE = 10 V 0.4 0.2 0 RVC for VCE(sat) -0.5 -1.0 -1.5 RVB for VBE -2.0 VCE(sat) @ IC/IB = 10 0.1 0.2 50 100 200 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) -2.5 500 1.0 k 0.1 0.2 Figure 11. "On" Voltages 0.5 1.0 2.0 5.0 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) Figure 12. Temperature Coefficients http://onsemi.com 5 500 P2N2222A PACKAGE DIMENSIONS TO-92 (TO-226) CASE 29-11 ISSUE AL A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. B R P L SEATING PLANE K DIM A B C D G H J K L N P R V D X X G J H V C SECTION X-X 1 N N STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER http://onsemi.com 6 INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 --0.250 --0.080 0.105 --0.100 0.115 --0.135 --- MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 --6.35 --2.04 2.66 --2.54 2.93 --3.43 --- P2N2222A Notes http://onsemi.com 7 P2N2222A ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access - then Dial 866-297-9322 ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 8 P2N2222A/D