October 2016
DocID027395 Rev 2
1/47
This is information on a product in full production.
www.st.com
VND7040AJ
Double channel high-side driver with MultiSense analog
feedback for automotive applications
Datasheet - production data
Features
Max transient supply voltage VCC 40 V
Operating voltage range VCC 4 to 28 V
Typ. on-state resistance (per Ch) RON 40
Current limitation (typ) ILIMH 34 A
Standby current (max) ISTBY 0.5 µA
AEC-Q100 qualified
General
Double channel smart high-side driver
with MultiSense analog feedback
Very low standby current
Compatible with 3 V and 5 V CMOS
outputs
MultiSense diagnostic functions
Multiplexed analog feedback of: load
current with high precision proportional
current mirror, VCC supply voltage and
TCHIP device temperature
Overload and short to ground (power
limitation) indication
Thermal shutdown indication
OFF-state open-load detection
Output short to VCC detection
Sense enable/disable
Protections
Undervoltage shutdown
Overvoltage clamp
Load current limitation
Self limiting of fast thermal transients
Configurable latch-off on
overtemperature or power limitation
with dedicated fault reset pin
Loss of ground and loss of VCC
Reverse battery with external
components
Electrostatic discharge protection
Applications
All types of Automotive resistive, inductive
and capacitive loads
Specially intended for automotive signal
lamps (up to P27W or SAE1156 and R5W
paralleled or LED rear combinations)
Description
The device is a double channel high-side driver
manufactured using ST proprietary VIPower® M0-
7 technology and housed in PowerSSO-16
package. The device is designed to drive 12 V
automotive grounded loads through a 3 V and
5 V CMOS-compatible interface, providing
protection and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches the output in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and OFF-state open-load.
A sense enable pin allows OFF-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
Contents
VND7040AJ
DocID027395 Rev 2
Contents
1 Block diagram and pin description ................................................ 5
2 Electrical specification .................................................................... 7
2.1 Absolute maximum ratings ................................................................ 7
2.2 Thermal data ..................................................................................... 8
2.3 Main electrical characteristics ........................................................... 8
2.4 Waveforms ...................................................................................... 20
2.5 Electrical characteristics curves ...................................................... 23
3 Protections..................................................................................... 27
3.1 Power limitation ............................................................................... 27
3.2 Thermal shutdown ........................................................................... 27
3.3 Current limitation ............................................................................. 27
3.4 Negative voltage clamp ................................................................... 27
4 Application information ................................................................ 28
4.1 GND protection network against reverse battery ............................. 28
4.1.1 Diode (DGND) in the ground line ..................................................... 29
4.2 Immunity against transient electrical disturbances .......................... 29
4.3 MCU I/Os protection ........................................................................ 30
4.4 Multisense - analog current sense .................................................. 30
4.4.1 Principle of Multisense signal generation ......................................... 32
4.4.2 TCASE and VCC monitor ................................................................. 34
4.4.3 Short to VCC and OFF-state open-load detection ........................... 35
5 Maximum demagnetization energy (VCC = 16 V) ........................ 36
6 Package and PCB thermal data .................................................... 37
6.1 PowerSSO-16 thermal data ............................................................ 37
7 Package information ..................................................................... 40
7.1 PowerSSO-16 package information ................................................ 40
7.2 PowerSSO-16 packing information ................................................. 42
7.3 PowerSSO-16 marking information ................................................. 44
8 Order codes ................................................................................... 45
9 Revision history ............................................................................ 46
VND7040AJ
List of tables
DocID027395 Rev 2
List of tables
Table 1: Pin functions ................................................................................................................................. 5
Table 2: Suggested connections for unused and not connected pins ........................................................ 6
Table 3: Absolute maximum ratings ........................................................................................................... 7
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Power section ............................................................................................................................... 8
Table 6: Switching ....................................................................................................................................... 9
Table 7: Logic inputs ................................................................................................................................. 10
Table 8: Protections .................................................................................................................................. 11
Table 9: MultiSense .................................................................................................................................. 12
Table 10: Truth table ................................................................................................................................. 19
Table 11: MultiSense multiplexer addressing ........................................................................................... 20
Table 12: ISO 7637-2 - electrical transient conduction along supply line ................................................. 29
Table 13: MultiSense pin levels in off-state .............................................................................................. 34
Table 14: PCB properties ......................................................................................................................... 37
Table 15: Thermal parameters ................................................................................................................. 39
Table 16: PowerSSO-16 mechanical data................................................................................................ 40
Table 17: Reel dimensions ....................................................................................................................... 42
Table 18: PowerSSO-16 carrier tape dimensions .................................................................................... 43
Table 19: Device summary ....................................................................................................................... 45
Table 20: Document revision history ........................................................................................................ 46
List of figures
VND7040AJ
DocID027395 Rev 2
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Configuration diagram (top view)................................................................................................. 6
Figure 3: Current and voltage conventions ................................................................................................. 7
Figure 4: IOUT/ISENSE versus IOUT ....................................................................................................... 16
Figure 5: Current sense accuracy versus IOUT ....................................................................................... 17
Figure 6: Switching time and Pulse skew ................................................................................................. 17
Figure 7: MultiSense timings (current sense mode) ................................................................................. 18
Figure 8: Multisense timings (chip temperature and VCC sense mode) .................................................. 18
Figure 9: TDSTKON .................................................................................................................................. 19
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ...................... 20
Figure 11: Latch functionality - behavior in hard short circuit condition .................................................... 21
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) .... 21
Figure 13: Standby mode activation ......................................................................................................... 22
Figure 14: Standby state diagram ............................................................................................................. 22
Figure 15: OFF-state output current ......................................................................................................... 23
Figure 16: Standby current ....................................................................................................................... 23
Figure 17: IGND(ON) vs. Iout ................................................................................................................... 23
Figure 18: Logic Input high level voltage .................................................................................................. 23
Figure 19: Logic Input low level voltage.................................................................................................... 23
Figure 20: High level logic input current ................................................................................................... 23
Figure 21: Low level logic input current .................................................................................................... 24
Figure 22: Logic Input hysteresis voltage ................................................................................................. 24
Figure 23: FaultRST Input clamp voltage ................................................................................................. 24
Figure 24: Undervoltage shutdown ........................................................................................................... 24
Figure 25: On-state resistance vs. Tcase ................................................................................................. 24
Figure 26: On-state resistance vs. VCC ................................................................................................... 24
Figure 27: Turn-on voltage slope .............................................................................................................. 25
Figure 28: Turn-off voltage slope .............................................................................................................. 25
Figure 29: Won vs. Tcase ......................................................................................................................... 25
Figure 30: Woff vs. Tcase ......................................................................................................................... 25
Figure 31: ILIMH vs. Tcase ....................................................................................................................... 25
Figure 32: OFF-state open-load voltage detection threshold ................................................................... 25
Figure 33: Vsense clamp vs. Tcase .......................................................................................................... 26
Figure 34: Vsenseh vs. Tcase .................................................................................................................. 26
Figure 35: Application diagram ................................................................................................................. 28
Figure 36: Simplified internal structure ..................................................................................................... 28
Figure 37: MultiSense and diagnostic block diagram ............................................................................ 31
Figure 38: MultiSense block diagram ....................................................................................................... 32
Figure 39: Analogue HSD open-load detection in off-state ................................................................... 33
Figure 40: Open-load / short to VCC condition ......................................................................................... 34
Figure 41: GND voltage shift .................................................................................................................... 35
Figure 42: Maximum turn off current versus inductance .......................................................................... 36
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 37
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 37
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 38
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) .............. 38
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 39
Figure 48: PowerSSO-16 package outline ............................................................................................... 40
Figure 49: PowerSSO-16 reel 13" ............................................................................................................ 42
Figure 50: PowerSSO-16 carrier tape ...................................................................................................... 43
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape .................................................. 43
Figure 52: PowerSSO-16 marking information ......................................................................................... 44
VND7040AJ
Block diagram and pin description
DocID027395 Rev 2
1 Block diagram and pin description
Figure 1: Block diagram
Table 1: Pin functions
Name Function
VCC Battery connection.
OUTPUT0,1 Power output.
GND Ground connection. Must be reverse battery protected by an external diode / resistor
network.
INPUT0,1 Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS
outputs. It controls output switch state.
MultiSense Multiplexed analog sense output pin; it delivers a current proportional to the selected
diagnostic: load current, supply voltage or chip temperature.
SEn Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense
diagnostic pin.
SEL0,1 Active high compatible with 3 V and 5 V CMOS outputs pin; they address the
MultiSense multiplexer.
FaultRST Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in
case of fault; If kept low, sets the outputs in auto-restart. mode
Block diagram and pin description
VND7040AJ
DocID027395 Rev 2
Figure 2: Configuration diagram (top view)
Table 2: Suggested connections for unused and not connected pins
Connection /
pin MultiSense N.C. Output Input
SEn, SELx,
FaultRST
Floating Not allowed X (1) X X X
To ground Through 1
resistor X Not
allowed
Through 15
resistor
Through 15
resistor
Notes:
(1)X: do not care.
VND7040AJ
Electrical specification
DocID027395 Rev 2
2 Electrical specification
Figure 3: Current and voltage conventions
V
Fn
= V
OUTn
- V
CC
during reverse battery condition.
2.1 Absolute maximum ratings
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 3: Absolute maximum ratings
Symbol Parameter Value Unit
VCC DC supply voltage 38 V
-VCC Reverse DC supply voltage 0.3
VCCPK Maximum transient supply voltage (ISO 16750-2:2010 Test B
clamped to 40V; RL = 4 Ω) 40 V
VCCJS Maximum jump start voltage for single pulse short circuit
protection 28 V
-IGND DC reverse ground pin current 200 mA
IOUT OUTPUT0,1 DC output current Internally
limited A
-IOUT Reverse DC output current 11
IIN INPUT0,1 DC input current
-1 to 10 mA
ISEn SEn DC input current
ISEL SEL0,1 DC input current
IFR FaultRST DC input current
VIN
OUTPUT
0,1
MultiSense
FaultRST
SE
n
SEL
0,1
INPUT
0,1
I
IN
I
SEL
I
SEn
I
FR
I
GND
V
SENSE
V
OUT
V
CC
V
Fn
I
S
I
OUT
I
SENSE
V
CC
V
SEL
V
SEn
V
FR
GAPGCFT00315
Electrical specification
VND7040AJ
DocID027395 Rev 2
Symbol Parameter Value Unit
VFR FaultRST DC input voltage 7.5 V
ISENSE MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V) 10 mA
MultiSense pin DC output current in reverse (VCC < 0 V) -20
EMAX Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;
Tjstart = 150 °C) 36 mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
INPUT0,1
MultiSense
SEn, SEL0,1, FaultRST
OUTPUT0,1
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD Charge device model (CDM-AEC-Q100-011) 750 V
Tj Junction operating temperature -40 to 150 °C
Tstg Storage temperature -55 to 150
2.2 Thermal data
Table 4: Thermal data
Symbol Parameter Typ. value Unit
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2) 5.7
°C/W
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3) 57
Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2) 23.5
Notes:
(1)One channel ON.
(2)Device mounted on four-layers 2s2p PCB
(3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
2.3 Main electrical characteristics
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5: Power section
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC Operating supply
voltage
4 13 28 V
VUSD Undervoltage
shutdown
4 V
VUSDReset Undervoltage
shutdown reset
5 V
VUSDhyst
Undervoltage
shutdown
hysteresis 0.3 V
VND7040AJ
Electrical specification
DocID027395 Rev 2
Symbol Parameter Test conditions Min. Typ. Max. Unit
RON On-state
resistance (1)
IOUT = 2.5 A; Tj = 25°C
40
IOUT = 2.5 A; Tj = 150°C
80
IOUT = 2.5 A; VCC = 4 V; Tj = 25°C
60
Vclamp Clamp voltage IS = 20 mA; 25°C < Tj < 150°C 41 46 52 V
IS = 20 mA; Tj = -40°C 38
V
ISTBY
Supply current in
standby at
VCC = 13 V (2)
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 25°C 0.5
µA
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 85°C (3) 0.5
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 125°C 3
tD_STBY Standby mode
blanking time
VCC = 13 V;
VIN = VOUT = VFR = VSEL0,1 = 0 V;
VSEn = 5 V to 0 V
60 300 550 µs
IS(ON) Supply current
VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V;
VIN0 = 5 V; VIN1 = 5 V;
IOUT0 = 0 A; IOUT1 = 0 A 5 8 mA
IGND(ON)
Control stage
current
consumption in ON
state. All channels
active.
VCC = 13 V; VSEn = 5 V;
VFR = VSEL0,1 = 0 V; VIN0 = 5 V;
VIN1 = 5 V; IOUT0 = 2.5 A; IOUT1 = 2.5 A 12 mA
IL(off)
Off-state output
current at
VCC = 13 V (2)
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 25°C 0 0.01 0.5
µA
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 125°C 0
3
VF Output - VCC diode
voltage (2) IOUT = -2.5 A; Tj = 150°C
0.7 V
Notes:
(1)For each channel
(2)PowerMOS leakage included.
(3)Parameter specified by design; not subject to production test.
Table 6: Switching
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol Parameter Test
conditions Min. Typ. Max. Unit
td(on)(1) Turn-on delay time at Tj = 25 °C RL = 5.2 Ω 10 25 120 µs
td(off)(1) Turn-off delay time at Tj = 25 °C 10 40 100
(dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C RL = 5.2 Ω 0.1 0.33 0.7 V/µs
(dVOUT/dt)off(1) Turn-off voltage slope at Tj = 25 °C 0.1 0.35 0.7
Electrical specification
VND7040AJ
DocID027395 Rev 2
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol Parameter Test
conditions Min. Typ. Max. Unit
WON Switching energy losses at turn-on
(twon) RL = 5.2 Ω 0.28 0.36(2) mJ
WOFF Switching energy losses at turn-off
(twoff) RL = 5.2 Ω 0.26 0.36(2) mJ
tSKEW(1) Differential Pulse skew (tPHL - tPLH) RL = 5.2 Ω -40 10 60 µs
Notes:
(1)See Figure 6: "Switching time and Pulse skew".
(2)Parameter guaranteed by design and characterization; not subject to production test.
Table 7: Logic inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
INPUT0,1 characteristics
VIL Input low level voltage
0.9 V
IIL Low level input current VIN = 0.9 V 1
µA
VIH Input high level voltage
2.1
V
IIH High level input current VIN = 2.1 V
10 µA
VI(hyst) Input hysteresis voltage
0.2
V
VICL Input clamp voltage IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
FaultRST characteristics
VFRL Input low level voltage
0.9 V
IFRL Low level input current VIN = 0.9 V 1
µA
VFRH Input high level voltage
2.1
V
IFRH High level input current VIN = 2.1 V
10 µA
VFR(hyst) Input hysteresis voltage
0.2
V
VFRCL Input clamp voltage IIN = 1 mA 5.3
7.5 V
IIN = -1 mA
-0.7
SEL0,1 characteristics (7 V < VCC < 18 V)
VSELL Input low level voltage
0.9 V
ISELL Low level input current VIN = 0.9 V 1
µA
VSELH Input high level voltage
2.1
V
ISELH High level input current VIN = 2.1 V
10 µA
VSEL(hyst) Input hysteresis voltage
0.2
V
VSELCL Input clamp voltage IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
VND7040AJ
Electrical specification
DocID027395 Rev 2
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
SEn characteristics (7 V < VCC < 18 V)
VSEnL Input low level voltage
0.9 V
ISEnL Low level input current VIN = 0.9 V 1
µA
VSEnH Input high level voltage
2.1
V
ISEnH High level input current VIN = 2.1 V
10 µA
VSEn(hyst) Input hysteresis voltage
0.2
V
VSEnCL Input clamp voltage IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
Table 8: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
ILIMH DC short circuit current VCC = 13 V 24 34 48
A
4 V < VCC < 18 V (1)
ILIML Short circuit current
during thermal cycling
VCC = 13 V;
TR < Tj < TTSD
13
TTSD Shutdown temperature
150 175 200
°C
TR Reset temperature(1)
TRS + 1 TRS + 7
TRS Thermal reset of fault
diagnostic indication VFR = 0 V; VSEn = 5 V 135
THYST Thermal hysteresis
(TTSD - TR)(1)
7
ΔTJ_SD Dynamic temperature Tj = -40°C; VCC = 13 V
60
K
tLATCH_RST Fault reset time for
output unlatch(1)
VFR = 5 V to 0 V;
VSEn = 5 V;
E.g. Ch0:
VIN0 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V
3 10 20 µs
VDEMAG Turn-off output voltage
clamp
IOUT = 2 A; L = 6 mH;
Tj = -40°C
VCC -
38
V
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C
VCC -
41
VCC -
46
VCC -
52 V
VON Output voltage drop
limitation IOUT = 0.25 A
20
mV
Notes:
(1)Parameter guaranteed by design and characterization; not subject to production test.
Electrical specification
VND7040AJ
DocID027395 Rev 2
Table 9: MultiSense
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VSENSE_CL MultiSense clamp
voltage
V
SEn
= 0 V; I
SENSE
= 1 mA
-17
-12 V
VSEn = 0 V; ISENSE = -1 mA
7
Current sense characteristics
KOL IOUT/ISENSE IOUT = 0.01 A;
VSENSE = 0.5 V; VSEn = 5 V 530
dKcal/Kcal(1)(2)
Current sense ratio
drift at calibration
point
IOUT = 0.01 A to 0.05 A;
Ical = 30 mA; VSENSE = 0.5 V;
VSEn = 5 V
-30 30 %
KLED IOUT/ISENSE IOUT = 0.05 A;
VSENSE = 0.5 V; VSEn = 5 V 900 1700 2650
dKLED/KLED(1)(2) Current sense ratio
drift
IOUT = 0.05 A;
VSENSE = 0.5 V; VSEn = 5 V -25
25 %
K0 IOUT/ISENSE
IOUT = 0.25 A;
VSENSE = 0.5 V;
VSEn = 5 V
940 1600 2200
dK0/K0(1)(2) Current sense ratio
drift
IOUT = 0.25 A; VSENSE = 0.5
V;
VSEn = 5 V
-20 20 %
K1 IOUT/ISENSE IOUT = 0.5 A; VSENSE = 4 V;
VSEn = 5 V 1060 1500 1970
dK1/K1(1)(2) Current sense ratio
drift
IOUT = 0.5 A; VSENSE = 4 V;
VSEn = 5 V -15
15 %
K2 IOUT/ISENSE IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V 1140 1410 1710
dK2/K2(1)(2) Current sense ratio
drift
IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V -10
10 %
K3 IOUT/ISENSE IOUT = 4.5 A; VSENSE = 4 V;
VSEn = 5 V 1260 1400 1540
dK3/K3(1)(2) Current sense ratio
drift
IOUT = 4.5 A; VSENSE = 4 V;
VSEn = 5 V -5
5 %
ISENSE0 MultiSense leakage
current
MultiSense disabled:
VSEn = 0 V 0
0.5
µA
MultiSense disabled:
-1 V < VSENSE < 5 V(1) -0.5
0.5
MultiSense enabled:
VSEn = 5 V; All channels
ON; IOUTX = 0 A; ChX
diagnostic selected;
E.g. Ch0:
VIN0 = 5 V; VIN1 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
IOUT0 = 0 A;
IOUT1 = 2.5 A
0 2
VND7040AJ
Electrical specification
DocID027395 Rev 2
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
MultiSense enabled:
VSEn = 5 V; ChX OFF; ChX
diagnostic selected:
E.g. Ch0:
VIN0 = 0 V; VIN1 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
IOUT1 = 2.5 A
0 2
VOUT_MSD(1)
Output Voltage for
MultiSense
shutdown
VSEn = 5 V; RSENSE = 2.7 kΩ;
E.g. Ch0:
VIN0 = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
IOUT0 = 2.5 A
5 V
VSENSE_SAT Multisense
saturation voltage
VCC = 7 V; RSENSE = 2.7 kΩ;
VSEn = 5 V; VIN0 = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT0 = 4.5 A; Tj = 150°C
5 V
ISENSE_SAT(1) CS saturation
current
VCC = 7 V; VSENSE = 4 V;
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
4 mA
IOUT_SAT(1) Output saturation
current
VCC = 7 V; VSENSE = 4 V;
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
Tj = 150°C
6 A
OFF-state diagnostic
VOL
OFF-state open-
load voltage
detection threshold
VSEn = 5 V; ChX OFF;
ChX diagnostic selected
E.g: Ch0
VIN0 = 0 V;
VSEL0 = 0 V;
VSEL1 = 0 V
2 3 4 V
IL(off2) OFF-state output
sink current
VIN = 0 V; VOUT = VOL;
Tj = -40°C to 125°C -100
-15 µA
tDSTKON
OFF-state
diagnostic delay
time from falling
edge of INPUT (see
Figure 9:
"TDSTKON")
VSEn = 5 V; ChX ON to OFF
transition;
ChX diagnostic selected
E.g: Ch0
VIN0 = 5 V to 0 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
IOUT0 = 0 A; VOUT = 4 V
100 350 700 µs
tD_OL_V
Settling time for
valid OFF-state
open load diagnostic
indication from rising
edge of SEn
VIN0 = 0 V; VIN1 = 0 V;
VFR = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT0 = 4 V;
VSEn = 0 V to 5 V
60 µs
Electrical specification
VND7040AJ
DocID027395 Rev 2
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
tD_VOL
OFF-state
diagnostic delay
time from rising
edge of VOUT
VSEn = 5 V; ChX OFF;
ChX diagnostic selected
E.g: Ch0
VIN0 = 0 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
VOUT = 0 V to 4 V
5 30 µs
Chip temperature analog feedback
VSENSE_TC
MultiSense output
voltage proportional
to chip temperature
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = -40°C
2.325 2.41 2.495 V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = 25°C
1.985 2.07 2.155 V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN0,1 = 0 V;
RSENSE = 1 kΩ; Tj = 125°C
1.435 1.52 1.605 V
dVSENSE_TC/dT Temperature
coefficient Tj = -40°C to 150°C
-5.5
mV/K
Transfer function VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
VCC supply voltage analog feedback
VSENSE_VCC
MultiSense output
voltage proportional
to VCC supply
voltage
VCC = 13 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V;
VIN0,1 = 0 V; RSENSE = 1
3.16 3.23 3.3 V
Transfer function (3) VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10: "Truth table")
VSENSEH
MultiSense output
voltage in fault
condition
VCC = 13 V; RSENSE = 1 kΩ;
E.g: Ch0 in open load
VIN0 = 0 V; VSEn = 5 V;
VSEL0 = 0 V;
VSEL1 = 0 V;
IOUT0 = 0 A; VOUT = 4 V
5 6.6 V
ISENSEH
MultiSense output
current in fault
condition
VCC = 13 V; VSENSE = 5 V 7 20 30 mA
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense
mode)")(4)
tDSENSE1H
Current sense
settling time from
rising edge of SEn
VIN = 5 V; VSEn = 0 V to 5 V;
RSENSE = 1 kΩ; RL = 5.2 Ω 60 µs
tDSENSE1L
Current sense
disable delay time
from falling edge of
SEn
VIN = 5 V; VSEn = 5 V to 0 V;
RSENSE = 1 kΩ; RL = 5.2 Ω 5 20 µs
VND7040AJ
Electrical specification
DocID027395 Rev 2
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
tDSENSE2H
Current sense
settling time from
rising edge of
INPUT
VIN = 0 V to 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 5.2 Ω 100 250 µs
ΔtDSENSE2H
Current sense
settling time from
rising edge of IOUT
(dynamic response
to a step change of
IOUT)
VIN = 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; ISENSE
= 90 % of ISENSEMAX;
RL = 5.2 Ω
100 µs
tDSENSE2L
Current sense turn-
off delay time from
falling edge of
INPUT
VIN = 5 V to 0 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 5.2 Ω 50 250 µs
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)")(4)
tDSENSE3H
VSENSE_TC settling
time from rising
edge of SEn
VSEn = 0 V to 5 V;
VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 60 µs
tDSENSE3L
VSENSE_TC disable
delay time from
falling edge of SEn
VSEn = 5 V to 0 V;
VSEL0 = 0 V; VSEL1 = 5 V;
RSENSE = 1 20 µs
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)")(4)
tDSENSE4H
VSENSE_VCC settling
time from rising
edge of SEn
VSEn = 0 V to 5 V;
VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 60 µs
tDSENSE4L
VSENSE_VCC disable
delay time from
falling edge of SEn
VSEn = 5 V to 0 V;
VSEL0 = 5 V; VSEL1 = 5 V;
RSENSE = 1 20 µs
MultiSense timings (Multiplexer transition times)(4)
tD_XtoY
MultiSense
transition delay from
ChX to ChY
VIN0 = 5 V; VIN1 = 5 V;
VSEn = 5 V; VSEL1 = 0 V;
VSEL0 = 0 V to 5 V;
IOUT0 = 0 A; IOUT1 = 3 A;
RSENSE = 1
20 µs
tD_CStoTC
MultiSense
transition delay from
current sense to TC
sense
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V to
5 V; IOUT0 = 1.5 A;
RSENSE = 1
60 µs
tD_TCtoCS
MultiSense
transition delay from
TC sense to current
sense
VIN0 = 5 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 5 V to
0 V; IOUT0 = 1.5 A;
RSENSE = 1
20 µs
tD_CStoVCC
MultiSense
transition delay from
current sense to VCC
sense
VIN1 = 5 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 0 V to
5 V; IOUT1 = 1.5A;
RSENSE = 1
60 µs
Electrical specification
VND7040AJ
DocID027395 Rev 2
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
tD_VCCtoCS
MultiSense
transition delay from
VCC sense to current
sense
VIN1 = 5 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V to
0 V; IOUT1 = 1.5 A;
RSENSE = 1
20 µs
tD_TCtoVCC
MultiSense
transition delay from
TC sense to VCC
sense
VCC = 13 V; Tj = 125°C;
VSEn = 5 V; VSEL0 = 0 V to
5 V; VSEL1 = 5 V;
RSENSE = 1
20 µs
tD_VCCtoTC
MultiSense
transition delay from
VCC sense to TC
sense
VCC = 13 V; Tj = 125°C;
VSEn = 5 V; VSEL0 = 5 V to
0 V; VSEL1 = 5 V;
RSENSE = 1
20 µs
tD_CStoVSENSEH
MultiSense
transition delay from
stable current sense
on ChX to VSENSEH
on ChY
VIN0 = 5 V; VIN1 = 0 V;
VSEn = 5 V; VSEL1 = 0 V;
VSEL0 = 0 V to 5 V;
IOUT0 = 3 A; VOUT1 = 4 V;
RSENSE = 1
20 µs
Notes:
(1)Parameter guaranteed by design and characterization; not subject to production test.
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
(3)VCC sensing and TC sensing are referred to GND potential.
(4)Transition delay are measured up to +/- 10% of final conditions.
Figure 4: IOUT/ISENSE versus IOUT
GAPGCFT01328
0
500
1000
1500
2000
2500
3000
0 1 2 3 4 5
K-factor
I
OUT
[A]
Max
Min
Typ
VND7040AJ
Electrical specification
DocID027395 Rev 2
Figure 5: Current sense accuracy versus IOUT
Figure 6: Switching time and Pulse skew
GAPGCFT01329
0
5
10
15
20
25
30
35
40
45
50
55
60
65
0123 4 5
%
I
OUT
[A]
Current sense uncalibrated precision
Currentsense calibratedprecision
Electrical specification
VND7040AJ
DocID027395 Rev 2
Figure 7: MultiSense timings (current sense mode)
Figure 8: Multisense timings (chip temperature and VCC sense mode)
CURRENT SENSE
IN1
SEn
IOUT1
tDSENSE2H tDSENSE1L tDSENSE2L
tDSENSE1H
SEL0
SEL1
Low
High
Low
High
Low
High
GAPGCFT00318
SENSE
SEn
V
CC
t
DSENSE4H
t
DSENSE4L
t
DSENSE3L
t
DSENSE3H
SEL0
SEL1
Low
High
Low
High
Low
High
VSENSE= VSENSE_VCC
VSENSE= VSENSE_TC
VCC VOLTAGE SENSE MODE CHIP TEMPERATURESENSE MODE
GAPGCFT00319
VND7040AJ
Electrical specification
DocID027395 Rev 2
Figure 9: TDSTKON
Table 10: Truth table
Mode Conditions INX FR SEn SELX OUTX MultiSense Comments
Standby All logic inputs
low L L L L L Hi-Z
Low quiescent
current
consumption
Normal
Nominal load
connected;
Tj < 150 °C
L X
See (1)
L See (1)
H L H See (1)
Outputs
configured for
auto-restart
H H H See (1)
Outputs
configured for
Latch-off
Overload
Overload or
short to GND
causing:
Tj > TTSD or
ΔTj > ΔTj_SD
L X
See (1)
L See (1)
H L H See (1)
Output cycles
with
temperature
hysteresis
H H L See (1) Output latches-
off
Undervoltage VCC < VUSD
(falling) X X X X L
L
Hi-Z
Hi-Z
Re-start when
VCC > VUSD +
VUSDhyst (rising)
OFF-state
diagnostics
Short to VCC L X See (1) H See (1)
Open-load L X H See (1) External pull-up
Negative
output voltage
Inductive
loads turn-off L X See (1) < 0 V See (1)
Notes:
(1)Refer to Table 11: "MultiSense multiplexer addressing"
T
DSTKON
V
INPU T
V
OU T
MultiSense
V
OU T
> V
OL
GAPG2609141140CFT
Electrical specification
VND7040AJ
DocID027395 Rev 2
Table 11: MultiSense multiplexer addressing
SEn SEL1 SEL0 MUX channel
MultiSense output
Normal
mode Overload OFF-state
diag. (1)
Negative
output
L X X
Hi-Z
H L L Channel 0
diagnostic
ISENSE =
1/K * IOUT0
VSENSE =
VSENSEH
VSENSE =
VSENSEH Hi-Z
H L H Channel 1
diagnostic
ISENSE =
1/K * IOUT1
VSENSE =
VSENSEH
VSENSE =
VSENSEH Hi-Z
H H L TCHIP Sense VSENSE = VSENSE_TC
H H H VCC Sense VSENSE = VSENSE_VCC
Notes:
(1)In case the output channel corresponding to the selected MUX channel is latched off while the
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0.
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic;
Mutisense = VSENSEH
2.4 Waveforms
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)
VND7040AJ
Electrical specification
DocID027395 Rev 2
Figure 11: Latch functionality - behavior in hard short circuit condition
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +
latch off)
Electrical specification
VND7040AJ
DocID027395 Rev 2
Figure 13: Standby mode activation
Figure 14: Standby state diagram
VND7040AJ
Electrical specification
DocID027395 Rev 2
2.5 Electrical characteristics curves
Figure 15: OFF-state output current
Figure 16: Standby current
Figure 17: IGND(ON) vs. Iout
Figure 18: Logic Input high level voltage
Figure 19: Logic Input low level voltage
Figure 20: High level logic input current
0
50
100
150
200
250
300
350
-50 -25 0 25 50 75 100125150175
T [°C]
Iloff [nA]
Off State
Vcc =13V
Vin = Vout = 0
GAPGCFT01308
GAPGCFT01309
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
ISTBY [µA]
Vcc =13V
GAPGCFT01310
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
-50 -25 0 25 50 75 100125150175
T [°C]
IGND(ON) [mA]
Vcc =13V
Iout0 = Iout1 = 2.5A
GAPGCFT01311
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-50 -25 0 25 50 75 100125150175
TC]
ViH,VFRH,VSELH,VSEnH [V]
GAPGCFT01312
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-50 -25 0 25 50 75 100125150175
T [°C]
VilL VFRL, VSELL, VSEnL [V]
GAPGCFT01313
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75100125150175
T [°C]
IiH, IFRH,ISELH, ISEnH [µA]
Electrical specification
VND7040AJ
DocID027395 Rev 2
Figure 21: Low level logic input current
Figure 22: Logic Input hysteresis voltage
Figure 23: FaultRST Input clamp voltage
Figure 24: Undervoltage shutdown
Figure 25: On-state resistance vs. Tcase
Figure 26: On-state resistance vs. VCC
GAPGCFT01314
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100125150175
T [°C]
IiL, IFRL, ISELL, ISEnL [µA]
GAPGCFT01315
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75100125150175
TC]
Vi(hyst),VFR(hyst),VSEL(hyst),VSEn(hyst) [V]
GAPGCFT01316
-1
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100125150175
T [°C]
VFRCL [V]
Iin = 1mA
Iin = -1mA
GAPGCFT01317
0
1
2
3
4
5
6
7
8
-50-25 0 25 5075 100125150175
T[°C]
VUSD[V]
GAPGCFT01318
0
10
20
30
40
50
60
70
80
90
100
-50 -25 0 25 50 75 100125150175
T [°C]
Ron [mOhm]
Iout = 2.5A
Vcc =13V
GAPGCFT01319
0
10
20
30
40
50
60
70
80
90
0 5 10 15 20 25 30 35 40
Vcc [V]
Ron [mOhm]
T = -40°C
T=25 °C
T = 125°C
T = 150°C
VND7040AJ
Electrical specification
DocID027395 Rev 2
Figure 27: Turn-on voltage slope
Figure 28: Turn-off voltage slope
Figure 29: Won vs. Tcase
Figure 30: Woff vs. Tcase
Figure 31: ILIMH vs. Tcase
Figure 32: OFF-state open-load voltage
detection threshold
GAPGCFT01320
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
(dVout/dt)On [Vs]
Vcc =13V
Rl = 5.2Ω
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75100125150175
T [°C]
(dVout/dt)Off [V/µs]
Vcc =13V
Rl=5.2Ω
GAPGCFT01321
GAPGCFT01322
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
Won [mJ]
GAPGCFT01323
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
Woff [mJ]
GAPGCFT01324
10
15
20
25
30
35
40
-50 -25 0 25 50 75 100125150175
T [°C]
Ilimh [A]
Vcc =13V
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100125150175
T [°C]
VOL [V]
GAPGCFT01325
Electrical specification
VND7040AJ
DocID027395 Rev 2
Figure 33: Vsense clamp vs. Tcase
Figure 34: Vsenseh vs. Tcase
GAPGCFT01326
-1
0
1
2
3
4
5
6
7
8
9
10
-50 -25 0 25 50 75 100125150175
T [°C]
VSENSE_CL [V]
Iin = 1mA
Iin = -1mA
GAPGCFT01327
0
1
2
3
4
5
6
7
8
9
10
-50-250255075100125150175
TC]
VSENSEH[V]
VND7040AJ
Protections
DocID027395 Rev 2
3 Protections
3.1 Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FaultRST = Low)
or remains off (FaultRST = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2 Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).
3.3 Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4 Negative voltage clamp
In case the device drives inductive load, the output voltage reaches a negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
Application information
VND7040AJ
DocID027395 Rev 2
4 Application information
Figure 35: Application diagram
4.1 GND protection network against reverse battery
Figure 36: Simplified internal structure
VND7040AJ
Application information
DocID027395 Rev 2
4.1.1 Diode (DGND) in the ground line
A resistor (typ. RGND = 4.7 ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
4.2 Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12: "ISO 7637-2 -
electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 12: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle /
pulse
repetition time
Pulse duration and
pulse generator
internal impedance
Level US(1) min max
1 III -112 V 500 pulses 0.5 s
2 ms, 10 Ω
2a III +55 V 500 pulses 0.2 s 5 s 50 µs, 2 Ω
3a IV -220 V 1h 90 ms 100
ms 0.1 µs, 50 Ω
3b IV +150 V 1h 90 ms 100
ms 0.1 µs, 50 Ω
4 (2) IV -7 V 1 pulse
100 ms, 0.01 Ω
Load dump according to ISO 16750-2:2010
Test B (3)
40 V 5 pulse 1 min
400 ms, 2 Ω
Notes:
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test pulse from ISO 7637-2:2004(E).
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150 °C).
Application information
VND7040AJ
DocID027395 Rev 2
4.3 MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15
4.4 Multisense - analog current sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
Current monitor: current mirror of channel output current
VCC monitor: voltage propotional to VCC
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer
addressing Table.
VND7040AJ
Application information
DocID027395 Rev 2
Figure 37: MultiSense and diagnostic block diagram
Application information
VND7040AJ
DocID027395 Rev 2
4.4.1 Principle of Multisense signal generation
Figure 38: MultiSense block diagram
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
Current mirror proportional to the load current in normal operation, delivering current
proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K
Where:
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from MultiSense pin in current output mode
VND7040AJ
Application information
DocID027395 Rev 2
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH.
The typical behavior in case of overload or hard short circuit is shown in Waveforms
section.
Figure 39: Analogue HSD open-load detection in off-state
Application information
VND7040AJ
DocID027395 Rev 2
Figure 40: Open-load / short to VCC condition
Table 13: MultiSense pin levels in off-state
Condition Output MultiSense SEn
Open-load
VOUT > VOL Hi-Z L
VSENSEH H
VOUT < VOL Hi-Z L
0 H
Short to VCC VOUT > VOL Hi-Z L
VSENSEH H
Nominal VOUT < VOL Hi-Z L
0 H
4.4.2 TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because a
voltage shift is generated between the device GND and the microcontroller input GND
reference.
Figure 41: "GND voltage shift" shows the link between VMEASURED and the real VSENSE
signal.
VND7040AJ
Application information
DocID027395 Rev 2
Figure 41: GND voltage shift
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 8.
Case temperature monitor
Case temperature monitor is capable of providing information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).
4.4.3 Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable that VPU is switched off during the module standby mode in order to avoid
the overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
Equation
R
PU
< V
PU
- 4
I
L(off2)min @ 4V
Maximum demagnetization energy (VCC = 16 V)
VND7040AJ
DocID027395 Rev 2
5 Maximum demagnetization energy (VCC = 16 V)
Figure 42: Maximum turn off current versus inductance
Values are generated with R
L
= 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
GAPGCFT01182
0.1
1
10
100
0.1 1 10 100 1000
I(A)
L (mH)
VND7040AJ- Maximum turn off Currentversus inductance
VND7040AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
VND7040AJ
Package and PCB thermal data
DocID027395 Rev 2
6 Package and PCB thermal data
6.1 PowerSSO-16 thermal data
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 14: PCB properties
Dimension Value
Board finish thickness 1.6 mm +/- 10%
Board dimension 77 mm x 86 mm
Board Material FR4
Copper thickness (top and bottom layers) 0.070 mm
Copper thickness (inner layers) 0.035 mm
Thermal vias separation 1.2 mm
Thermal via diameter 0.3 mm +/- 0.08 mm
Copper thickness on vias 0.025 mm
Footprint dimension (top layer) 2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer) Footprint, 2 cm2 or 8 cm2
Package and PCB thermal data
VND7040AJ
DocID027395 Rev 2
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
30
40
50
60
70
80
90
0 2 4 6 8 10
RTHjamb
RTHjamb
GAPGCFT01183
0.1
1
10
100
0.00010.001 0.01 0.1 1 10 100 1000
ZTH C/W)
Time (s)
Cu=8 cm2
Cu=2 cm2
Cu=foot print
4 Layer
GAPGCFT01184
VND7040AJ
Package and PCB thermal data
DocID027395 Rev 2
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 15: Thermal parameters
Area/island (cm2) Footprint 2 8 4L
R1 = R7 (°C/W) 2.3
R2 = R8 (°C/W) 1.8
R3 (°C/W) 7 7 7 5
R4 (°C/W) 16 6 6 4
R5 (°C/W) 30 20 10 3
R6 (°C/W) 26 20 18 7
C1 = C7 (W.s/°C) 0.00045
C2 = C8 (W.s/°C) 0.03
C3 (W.s/°C) 0.1
C4 (W.s/°C) 0.2 0.3 0.3 0.4
C5 (W.s/°C) 0.4 1 1 4
C6 (W.s/°C) 3 5 7 18
Package information
VND7040AJ
DocID027395 Rev 2
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 PowerSSO-16 package information
Figure 48: PowerSSO-16 package outline
Table 16: PowerSSO-16 mechanical data
Ref.
Dimensions
Millimeters
Min. Typ. Max.
Θ
Θ1
Θ2
15°
Θ3
15°
A
1.70
VND7040AJ
Package information
DocID027395 Rev 2
Ref.
Dimensions
Millimeters
Min. Typ. Max.
A1 0.00
0.10
A2 1.10
1.60
b 0.20
0.30
b1 0.20 0.25 0.28
c 0.19
0.25
c1 0.19 0.20 0.23
D 4.9 BSC
D1 2.90
3.50
e 0.50 BSC
E 6.00 BSC
E1 3.90 BSC
E2 2.20
2.80
h 0.25
0.50
L 0.40 0.60 0.85
L1 1.00 REF
N 16
R 0.07
R1 0.07
S 0.20
Tolerance of form and position
aaa 0.10
bbb 0.10
ccc 0.08
ddd 0.08
eee 0.10
fff 0.10
ggg 0.15
Package information
VND7040AJ
DocID027395 Rev 2
7.2 PowerSSO-16 packing information
Figure 49: PowerSSO-16 reel 13"
Table 17: Reel dimensions
Description Value(1)
Base quantity 2500
Bulk quantity 2500
A (max) 330
B (min) 1.5
C (+0.5, -0.2) 13
D (min) 20.2
N 100
W1 (+2 /-0) 12.4
W2 (max) 18.4
Notes:
(1)All dimensions are in mm.
VND7040AJ
Package information
DocID027395 Rev 2
Figure 50: PowerSSO-16 carrier tape
Table 18: PowerSSO-16 carrier tape dimensions
Description Value(1)
A0 6.50 ± 0.1
B0 5.25 ± 0.1
K0 2.10 ± 0.1
K1 1.80 ± 0.1
F 5.50 ± 0.1
P1 8.00 ± 0.1
W 12.00 ± 0.3
Notes:
(1)All dimensions are in mm.
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape
0.30 ±0.05 1.55 ±0.05
1.6±0.1
R 0. 5
Typical
K
1
K
0
B
0
P
2
2.0 ±0.1
P
0
4.0 ±0.1
P
1
A
0
F
W
1.75 ±0.1
SECTION X - X
SECTION Y - Y
REF 4.18
REF 0. 6
REF 0. 5
X
X
Y Y
GAPG2204151242CFT
Package information
VND7040AJ
DocID027395 Rev 2
7.3 PowerSSO-16 marking information
Figure 52: PowerSSO-16 marking information
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in production and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions.
VND7040AJ
Order codes
DocID027395 Rev 2
8 Order codes
Table 19: Device summary
Package Order codes
Tape and reel
PowerSSO-16 VND7040AJTR
Revision history
VND7040AJ
DocID027395 Rev 2
9 Revision history
Table 20: Document revision history
Date Revision Changes
19-May-2015 1 Initial release.
02-Oct-2016 2
Updated the following:
Features list on the cover page
Figure 52: "PowerSSO-16 marking information"
VND7040AJ
DocID027395 Rev 2
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics All rights reserved