19-4323; Rev 9; 5/00 +5V-Powered, Multichannel RS-232 Drivers/Receivers ____________________________Features Superior to Bipolar Operate from Single +5V Power Supply (+5V and +12V--MAX231/MAX239) Low-Power Receive Mode in Shutdown (MAX223/MAX242) Meet All EIA/TIA-232E and V.28 Specifications Multiple Drivers and Receivers 3-State Driver and Receiver Outputs Open-Line Detection (MAX243) Ordering Information ________________________Applications PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE Portable Computers Low-Power Modems Interface Translation Battery-Powered RS-232 Systems Multidrop RS-232 Networks TEMP. RANGE 0C to +70C 0C to +70C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -55C to +125C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP Ordering Information continued at end of data sheet. *Contact factory for dice specifications. Selection Table Part Number MAX220 MAX222 MAX223 (MAX213) MAX225 MAX230 (MAX200) MAX231 (MAX201) MAX232 (MAX202) MAX232A MAX233 (MAX203) MAX233A MAX234 (MAX204) MAX235 (MAX205) MAX236 (MAX206) MAX237 (MAX207) MAX238 (MAX208) MAX239 (MAX209) MAX240 MAX241 (MAX211) MAX242 MAX243 MAX244 MAX245 MAX246 MAX247 MAX248 MAX249 Power Supply (V) +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 No. of RS-232 Drivers/Rx 2/2 2/2 4/5 5/5 5/0 2/2 No. of Ext. Caps 4 4 4 0 4 2 Nominal Cap. Value (F) 0.1 0.1 1.0 (0.1) -- 1.0 (0.1) 1.0 (0.1) SHDN & ThreeState No Yes Yes Yes Yes No Rx Active in SHDN -- -- -- -- Data Rate (kbps) 120 200 120 120 120 120 2/2 2/2 2/2 2/2 4/0 5/5 4/3 5/3 4/4 3/5 4 4 0 0 4 0 4 4 4 2 1.0 (0.1) 0.1 -- -- 1.0 (0.1) -- 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) No No No No No Yes Yes No No No -- -- -- -- -- -- -- -- -- -- 120 (64) 200 120 200 120 120 120 120 120 120 5/5 4/5 2/2 2/2 8/10 8/10 8/10 8/9 8/8 6/10 4 4 4 4 4 0 0 0 4 4 1.0 1.0 (0.1) 0.1 0.1 1.0 -- -- -- 1.0 1.0 Yes Yes Yes No No Yes Yes Yes Yes Yes -- -- -- -- 120 120 200 200 120 120 120 120 120 120 Features Ultra-low-power, industry-standard pinout Low-power shutdown MAX241 and receivers active in shutdown Available in SO 5 drivers with shutdown Standard +5/+12V or battery supplies; same functions as MAX232 Industry standard Higher slew rate, small caps No external caps No external caps, high slew rate Replaces 1488 No external caps Shutdown, three state Complements IBM PC serial port Replaces 1488 and 1489 Standard +5/+12V or battery supplies; single-package solution for IBM PC serial port DIP or flatpack package Complete IBM PC serial port Separate shutdown and enable Open-line detection simplifies cabling High slew rate High slew rate, int. caps, two shutdown modes High slew rate, int. caps, three shutdown modes High slew rate, int. caps, nine operating modes High slew rate, selective half-chip enables Available in quad flatpack package ________________________________________________________________ Maxim Integrated Products 1 For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX220-MAX249 General Description The MAX220-MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where 12V is not available. These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than 5W. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for applications where printed circuit board space is critical. MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS--MAX220/222/232A/233A/242/243 20-Pin Plastic DIP (derate 8.00mW/C above +70C) ..440mW 16-Pin Narrow SO (derate 8.70mW/C above +70C) ...696mW 16-Pin Wide SO (derate 9.52mW/C above +70C)......762mW 18-Pin Wide SO (derate 9.52mW/C above +70C)......762mW 20-Pin Wide SO (derate 10.00mW/C above +70C)....800mW 20-Pin SSOP (derate 8.00mW/C above +70C) ..........640mW 16-Pin CERDIP (derate 10.00mW/C above +70C).....800mW 18-Pin CERDIP (derate 10.53mW/C above +70C).....842mW Operating Temperature Ranges MAX2_ _AC_ _, MAX2_ _C_ _ .............................0C to +70C MAX2_ _AE_ _, MAX2_ _E_ _ ..........................-40C to +85C MAX2_ _AM_ _, MAX2_ _M_ _ .......................-55C to +125C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10sec) .............................+300C Supply Voltage (VCC) ...............................................-0.3V to +6V Input Voltages TIN..............................................................-0.3V to (VCC - 0.3V) RIN (Except MAX220) ........................................................30V RIN (MAX220).....................................................................25V TOUT (Except MAX220) (Note 1) .......................................15V TOUT (MAX220)...............................................................13.2V Output Voltages TOUT ...................................................................................15V ROUT .........................................................-0.3V to (VCC + 0.3V) Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (TA = +70C) 16-Pin Plastic DIP (derate 10.53mW/C above +70C)....842mW 18-Pin Plastic DIP (derate 11.11mW/C above +70C)....889mW Note 1: Input voltage measured with TOUT in high-impedance state, SHDN or VCC = 0V. Note 2: For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS--MAX220/222/232A/233A/242/243 (VCC = +5V 10%, C1-C4 = 0.1F MAX220, C1 = 0.047F, C2-C4 = 0.33F, TA = TMIN to TMAX unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS RS-232 TRANSMITTERS Output Voltage Swing All transmitter outputs loaded with 3k to GND 5 Input Logic Threshold Low Input Logic Threshold High Logic Pull-Up/lnput Current Output Leakage Current 8 1.4 All devices except MAX220 MAX220: VCC = 5.0V 2 V 0.8 1.4 V 2.4 All except MAX220, normal operation 5 40 SHDN = 0V, MAX222/242, shutdown, MAX220 0.01 1 VCC = 5.5V, SHDN = 0V, VOUT = 15V, MAX222/242 0.01 10 VCC = SHDN = 0V, VOUT = 15V 0.01 10 200 116 Data Rate V A A kb/s Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = 2V 300 10M Output Short-Circuit Current VOUT = 0V 7 22 mA RS-232 RECEIVERS RS-232 Input Voltage Operating Range 30 RS-232 Input Threshold Low VCC = 5V RS-232 Input Threshold High VCC = 5V RS-232 Input Hysteresis All except MAX243 R2IN 0.8 MAX243 R2IN (Note 2) -3 1.8 2.4 MAX243 R2IN (Note 2) -0.5 -0.1 0.5 1 RS-232 Input Resistance 2 1 3 TTL/CMOS Output Voltage High IOUT = -1.0mA TTL/CMOS Output Short-Circuit Current 0.2 MAX243 IOUT = 3.2mA V All except MAX243 R2IN All except MAX243, VCC = 5V, no hysteresis in shdn. TTL/CMOS Output Voltage Low 1.3 V V V 5 7 k 0.2 0.4 V 3.5 VCC - 0.2 Sourcing VOUT = GND -2 -10 Shrinking VOUT = VCC 10 30 _______________________________________________________________________________________ V mA +5V-Powered, Multichannel RS-232 Drivers/Receivers (VCC = +5V 10%, C1-C4 = 0.1F MAX220, C1 = 0.047F, C2-C4 = 0.33F, TA = TMIN to TMAX unless otherwise noted.) PARAMETER CONDITIONS TTL/CMOS Output Leakage Current SHDN = VCC or EN = VCC (SHDN = 0V for MAX222), 0V VOUT VCC EN Input Threshold Low MAX242 EN Input Threshold High MAX242 2.0 Operating Supply Voltage 3k load both inputs MAX220 UNITS 0.05 10 A 1.4 0.8 V 1.4 5.5 MAX222/232A/233A/242/243 4 10 MAX220 12 MAX222/232A/233A/242/243 15 TA = +25C 0.1 10 TA = 0C to +70C 2 50 TA = -40C to +85C 2 50 TA = -55C to +125C 35 100 SHDN Input Leakage Current MAX222/242 SHDN Threshold Low MAX222/242 SHDN Threshold High MAX222/242 CL = 50pF to 2500pF, MAX222/232A/233A/242/243 RL = 3k to 7k, VCC = 5V, TA = +25C, measured from +3V MAX220 to -3V or -3V to +3V MAX222/232A/233A/242/243 tPHLT MAX220 tPLHT V 2 MAX222/242 Transmitter Propagation Delay TLL to RS-232 (normal operation), Figure 1 MAX 0.5 Shutdown Supply Current Transition Slew Rate TYP 4.5 No load VCC Supply Current (SHDN = VCC), Figures 5, 6, 11, 19 MIN 1.4 MAX222/232A/233A/242/243 mA A 1 A 0.8 V 2.0 1.4 V 6 12 30 1.5 3 30 1.3 3.5 V/s 4 10 1.5 3.5 s 5 10 MAX222/232A/233A/242/243 0.5 1 MAX220 0.6 3 MAX222/232A/233A/242/243 0.6 1 MAX220 0.8 3 tPHLS MAX242 0.5 10 tPLHS MAX242 2.5 10 Receiver-Output Enable Time, Figure 3 tER MAX242 125 500 ns Receiver-Output Disable Time, Figure 3 tDR MAX242 160 500 ns Transmitter-Output Enable Time (SHDN goes high), Figure 4 tET MAX222/242, 0.1F caps (includes charge-pump start-up) 250 s Transmitter-Output Disable Time (SHDN goes low), Figure 4 tDT MAX222/242, 0.1F caps 600 ns Transmitter + to - Propagation Delay Difference (normal operation) tPHLT - tPLHT MAX222/232A/233A/242/243 300 MAX220 2000 Receiver + to - Propagation Delay Difference (normal operation) tPHLR - tPLHR MAX222/232A/233A/242/243 100 MAX220 225 Receiver Propagation Delay RS-232 to TLL (normal operation), Figure 2 Receiver Propagation Delay RS-232 to TLL (shutdown), Figure 2 tPHLR tPLHR MAX220 V s s ns ns Note 3: MAX243 R2OUT is guaranteed to be low when R2IN is 0V or is floating. _______________________________________________________________________________________ 3 MAX220-MAX249 ELECTRICAL CHARACTERISTICS--MAX220/222/232A/233A/242/243 (continued) __________________________________________Typical Operating Characteristics MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243 VCC = 5V NO LOAD ON TRANSMITTER OUTPUTS (EXCEPT MAX220, MAX233A) 2 0 0.1F V- LOADED, NO LOAD ON V+ -2 1F 0.1F -4 ALL CAPS 1F 9 VCC = +5.25V 8 ALL CAPS 0.1F 7 1F CAPS V+ V+, V- VOLTAGE (V) EITHER V+ OR V- LOADED 4 +10V MAX220-02 6 OUTPUT LOAD CURRENT FLOWS FROM V+ TO V- 10 OUTPUT CURRENT (mA) 1F 8 11 MAX220-01 10 MAX222/MAX242 ON-TIME EXITING SHUTDOWN VCC = +4.75V +5V +5V V+ 0.1F CAPS SHDN 0V 0V 1F CAPS 6 -6 V+ LOADED, NO LOAD ON V- -10 0 5 10 15 LOAD CURRENT (mA) 4 0.1F CAPS 5 -8 20 25 V- V- -10V 4 0 10 20 30 40 50 60 500s/div DATA RATE (kbits/sec) _______________________________________________________________________________________ MAX220-03 AVAILABLE OUTPUT CURRENT vs. DATA RATE OUTPUT VOLTAGE vs. LOAD CURRENT OUTPUT VOLTAGE (V) MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V-Powered, Multichannel RS-232 Drivers/Receivers 20-Pin Wide SO (derate 10 00mW/C above +70C).......800mW 24-Pin Wide SO (derate 11.76mW/C above +70C).......941mW 28-Pin Wide SO (derate 12.50mW/C above +70C) .............1W 44-Pin Plastic FP (derate 11.11mW/C above +70C) .....889mW 14-Pin CERDIP (derate 9.09mW/C above +70C) ..........727mW 16-Pin CERDIP (derate 10.00mW/C above +70C) ........800mW 20-Pin CERDIP (derate 11.11mW/C above +70C) ........889mW 24-Pin Narrow CERDIP (derate 12.50mW/C above +70C) ..............1W 24-Pin Sidebraze (derate 20.0mW/C above +70C)..........1.6W 28-Pin SSOP (derate 9.52mW/C above +70C).............762mW Operating Temperature Ranges MAX2 _ _ C _ _......................................................0C to +70C MAX2 _ _ E _ _ ...................................................-40C to +85C MAX2 _ _ M _ _ ...............................................-55C to +125C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10sec) .............................+300C Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS--MAX223/MAX230-MAX241 (MAX223/230/232/234/236/237/238/240/241, VCC = +5V 10; MAX233/MAX235, VCC = 5V 5% C1-C4 = 1.0F; MAX231/MAX239, VCC = 5V 10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER Output Voltage Swing CONDITIONS All transmitter outputs loaded with 3k to ground MIN TYP 5.0 7.3 MAX232/233 VCC Power-Supply Current No load, TA = +25C V+ Power-Supply Current MAX223/230/234-238/240/241 10 7 15 0.4 1 MAX231 1.8 5 MAX239 5 15 MAX223 15 50 MAX230/235/236/240/241 1 10 TA = +25C Input Logic Threshold Low TIN; EN, SHDN (MAX233); EN, SHDN (MAX230/235-241) 0.8 TIN 2.0 Input Logic Threshold High EN, SHDN (MAX223); EN, SHDN (MAX230/235/236/240/241) 2.4 Logic Pull-Up Current TIN = 0V mA mA A V V 1.5 -30 UNITS V 5 MAX231/239 Shutdown Supply Current Receiver Input Voltage Operating Range MAX 200 A 30 V _______________________________________________________________________________________ 5 MAX220-MAX249 ABSOLUTE MAXIMUM RATINGS--MAX223/MAX230-MAX241 VCC ...........................................................................-0.3V to +6V V+ ................................................................(VCC - 0.3V) to +14V V- ............................................................................+0.3V to -14V Input Voltages TIN ............................................................-0.3V to (VCC + 0.3V) RIN......................................................................................30V Output Voltages TOUT ...................................................(V+ + 0.3V) to (V- - 0.3V) ROUT .........................................................-0.3V to (VCC + 0.3V) Short-Circuit Duration, TOUT ......................................Continuous Continuous Power Dissipation (TA = +70C) 14-Pin Plastic DIP (derate 10.00mW/C above +70C)....800mW 16-Pin Plastic DIP (derate 10.53mW/C above +70C)....842mW 20-Pin Plastic DIP (derate 11.11mW/C above +70C)....889mW 24-Pin Narrow Plastic DIP (derate 13.33mW/C above +70C) ..........1.07W 24-Pin Plastic DIP (derate 9.09mW/C above +70C)......500mW 16-Pin Wide SO (derate 9.52mW/C above +70C).........762mW MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ELECTRICAL CHARACTERISTICS--MAX223/MAX230-MAX241 (continued) (MAX223/230/232/234/236/237/238/240/241, VCC = +5V 10; MAX233/MAX235, VCC = 5V 5% C1-C4 = 1.0F; MAX231/MAX239, VCC = 5V 10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER RS-232 Input Threshold Low RS-232 Input Threshold High CONDITIONS TA = +25C, VCC = 5V TA = +25C, VCC = 5V Normal operation SHDN = 5V (MAX223) SHDN = 0V (MAX235/236/240/241) MIN TYP 0.8 1.2 0.6 Normal operation SHDN = 5V (MAX223) SHDN = 0V (MAX235/236/240/241) 1.5 1.7 1.5 2.4 0.2 0.5 1.0 V 3 5 7 k 0.4 V 3.5 VCC - 0.4 RS-232 Input Resistance TA = +25C, VCC = 5V TTL/CMOS Output Voltage Low IOUT = 1.6mA (MAX231/232/233, IOUT = 3.2mA) TTL/CMOS Output Voltage High IOUT = -1mA TTL/CMOS Output Leakage Current 0V ROUT VCC; EN = 0V (MAX223); EN = VCC (MAX235-241 ) Receiver Output Enable Time Normal operation MAX223 600 MAX235/236/239/240/241 400 Receiver Output Disable Time Normal operation MAX223 900 MAX235/236/239/240/241 250 Propagation Delay Normal operation RS-232 IN to TTL/CMOS OUT, SHDN = 0V CL = 150pF (MAX223) Transmitter Output Short-Circuit Current 6 2.4 V Shutdown (MAX223) SHDN = 0V, EN = 5V (R4IN R5IN) VCC = 5V, no hysteresis in shutdown Transmitter Output Resistance UNITS V Shutdown (MAX223) SHDN = 0V, EN = 5V (R4IN, R5IN) RS-232 Input Hysteresis Transition Region Slew Rate MAX 0.05 10 ns 0.5 10 4 40 tPLHS 6 40 5.1 30 3 A ns tPHLS MAX223/MAX230/MAX234-241, TA = +25C, VCC = 5V, RL = 3k to 7k CL = 50pF to 2500pF, measured from +3V to -3V or -3V to +3V s V/s MAX231/MAX232/MAX233, TA = +25C, VCC = 5V, RL = 3k to 7k, CL = 50pF to 2500pF, measured from +3V to -3V or -3V to +3V VCC = V+ = V- = 0V, VOUT = 2V V 4 30 300 10 _______________________________________________________________________________________ mA mA +5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTER OUTPUT VOLTAGE (VOH) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES 2 TRANSMITTERS LOADED 7.2 7.0 6.5 4.5 6.6 TA = +25C VCC = +5V 3 TRANSMITTERS LOADED RL = 3k C1-C4 = 1F 6.4 6.2 6.0 0 500 1000 1500 8.0 7.0 3 TRANSMITTERS LOADED 4 TRANSMITTERS LOADED 6.0 5.0 4.0 0 2500 2000 500 1000 1500 2000 2500 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (VOL) vs. VCC TRANSMITTER OUTPUT VOLTAGE (VOL) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES TRANSMITTER OUTPUT VOLTAGE (V+, V-) vs. LOAD CURRENT TA = +25C VCC = +5V 3 TRANSMITTERS LOADED RL = 3k C1-C4 = 1F -6.2 -6.4 VOL (V) -6.6 -7.5 1 TRANSMITTER LOADED 2 TRANSMITTERS LOADED 10 8 6 -7.0 TA = +25C VCC = +5V C1-C4 = 1F V- LOADED, V+ AND VNO LOAD EQUALLY ON V+ LOADED 4 160kbits/sec 80kbits/sec 20Kkbits/sec -6.8 MAX220-09 -6.0 MAX220-08 TA = +25C C1-C4 = 1F TRANSMITTER LOADS = 3k || 2500pF V+, V- (V) -7.0 2 0 -2 V+ LOADED, NO LOAD ON V- -4 -7.2 3 TRANSMITTERS LOADED -6 -7.4 -8 5.0 VCC (V) 5.5 ALL TRANSMITTERS UNLOADED -10 -7.6 -9.0 4.5 2 TRANSMITTERS LOADED 9.0 LOAD CAPACITANCE (pF) 4 TRANSMITTERS LOADED -8.5 SLEW RATE (V/s) 160kbits/sec 80kbits/sec 20kbits/sec VCC (V) -6.5 -8.0 TA = +25C VCC = +5V LOADED, RL = 3k C1-C4 = 1F 10.0 6.8 5.5 5.0 -6.0 VOL (V) VOH (V) 3 TRANSMITTERS LOADED TA = +25C C1-C4 = 1F TRANSMITTER 4 TRANSMITTERS LOADS = 3k || 2500pF LOADED 7.5 1 TRANSMITTER LOADED 11.0 7.0 1 TRANSMITTER LOADED MAX220-07 VOH (V) 8.0 12.0 MAX220-05 7.4 MAX220-04 8.5 TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE MAX220-06 TRANSMITTER OUTPUT VOLTAGE (VOH) vs. VCC 0 500 1000 1500 0 2500 2000 5 10 15 20 25 30 35 40 45 50 CURRENT (mA) LOAD CAPACITANCE (pF) V+, V- WHEN EXITING SHUTDOWN (1F CAPACITORS) MAX220-13 V+ O V- SHDN* 500ms/div *SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTS _______________________________________________________________________________________ 7 MAX220-MAX249 __________________________________________Typical Operating Characteristics MAX223/MAX230-MAX241 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS--MAX225/MAX244-MAX249 Supply Voltage (VCC) ...............................................-0.3V to +6V Input Voltages TIN ENA, ENB, ENR, ENT, ENRA, ENRB, ENTA, ENTB..................................-0.3V to (VCC + 0.3V) RIN .....................................................................................25V TOUT (Note 3).....................................................................15V ROUT ........................................................-0.3V to (VCC + 0.3V) Short Circuit (one output at a time) TOUT to GND ............................................................Continuous ROUT to GND............................................................Continuous Continuous Power Dissipation (TA = +70C) 28-Pin Wide SO (derate 12.50mW/C above +70C) .............1W 40-Pin Plastic DIP (derate 11.11mW/C above +70C) ...611mW 44-Pin PLCC (derate 13.33mW/C above +70C) ...........1.07W Operating Temperature Ranges MAX225C_ _, MAX24_C_ _ ..................................0C to +70C MAX225E_ _, MAX24_E_ _ ...............................-40C to +85C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering,10sec) ..............................+300C Note 4: Input voltage measured with transmitter output in a high-impedance state, shutdown, or VCC = 0V. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS--MAX225/MAX244-MAX249 (MAX225, VCC = 5.0V 5%; MAX244-MAX249, VCC = +5.0V 10%, external capacitors C1-C4 = 1F; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS 1.4 0.8 V 2 1.4 RS-232 TRANSMITTERS Input Logic Threshold Low Input Logic Threshold High Normal operation Logic Pull-Up/lnput Current Tables 1a-1d Data Rate Tables 1a-1d, normal operation Output Voltage Swing All transmitter outputs loaded with 3k to GND Output Leakage Current (shutdown) Tables 1a-1d Shutdown 5 V 10 50 0.01 1 120 64 7.5 A kbits/sec V ENA, ENB, ENT, ENTA, ENTB = VCC, VOUT = 15V 0.01 25 VCC = 0V, VOUT = 15V 0.01 25 A Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = 2V (Note 4) 300 10M Output Short-Circuit Current VOUT = 0V 7 30 mA RS-232 RECEIVERS RS-232 Input Voltage Operating Range 25 RS-232 Input Threshold Low VCC = 5V RS-232 Input Threshold High VCC = 5V RS-232 Input Hysteresis VCC = 5V RS-232 Input Resistance 1.3 2.4 0.2 0.5 1.0 V 3 5 7 k 0.2 0.4 V IOUT = 3.2mA TTL/CMOS Output Voltage High IOUT = -1.0mA 3.5 VCC - 0.2 Sourcing VOUT = GND -2 -10 Shrinking VOUT = VCC 10 30 TTL/CMOS Output Leakage Current Normal operation, outputs disabled, Tables 1a-1d, 0V VOUT VCC, ENR_ = VCC V 1.8 TTL/CMOS Output Voltage Low TTL/CMOS Output Short-Circuit Current 8 0.8 V 0.05 _______________________________________________________________________________________ V V mA 0.10 A +5V-Powered, Multichannel RS-232 Drivers/Receivers (MAX225, VCC = 5.0V 5%; MAX244-MAX249, VCC = +5.0V 10%, external capacitors C1-C4 = 1F; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS POWER SUPPLY AND CONTROL LOGIC Operating Supply Voltage No load VCC Supply Current (normal operation) Shutdown Supply Current 3k loads on all outputs MAX225 4.75 5.25 MAX244-MAX249 4.5 5.5 MAX225 10 20 MAX244-MAX249 11 30 MAX225 40 MAX244-MAX249 57 TA = +25C 8 TA = TMIN to TMAX 50 Leakage current Control Input 25 1 Threshold low 1.4 Threshold high 0.8 2.4 1.4 5 10 30 V mA A A V AC CHARACTERISTICS Transition Slew Rate CL = 50pF to 2500pF, RL = 3k to 7k, VCC = 5V, TA = +25C, measured from +3V to -3V or -3V to +3V V/s Transmitter Propagation Delay TLL to RS-232 (normal operation), Figure 1 tPHLT 1.3 3.5 tPLHT 1.5 3.5 Receiver Propagation Delay TLL to RS-232 (normal operation), Figure 2 tPHLR 0.6 1.5 tPLHR 0.6 1.5 Receiver Propagation Delay TLL to RS-232 (low-power mode), Figure 2 tPHLS 0.6 10 tPLHS 3.0 10 Transmitter + to - Propagation Delay Difference (normal operation) tPHLT - tPLHT 350 ns Receiver + to - Propagation Delay Difference (normal operation) tPHLR - tPLHR 350 ns s s s Receiver-Output Enable Time, Figure 3 tER 100 500 ns Receiver-Output Disable Time, Figure 3 tDR 100 500 ns Transmitter Enable Time Transmitter Disable Time, Figure 4 tET tDT MAX246-MAX249 (excludes charge-pump start-up) 5 s MAX225/MAX245-MAX249 (includes charge-pump start-up) 10 ms 100 ns Note 5: The 300 minimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or VCC = 0V is 10M as is implied by the leakage specification. _______________________________________________________________________________________ 9 MAX220-MAX249 ELECTRICAL CHARACTERISTICS--MAX225/MAX244-MAX249 (continued) __________________________________________Typical Operating Characteristics MAX225/MAX244-MAX249 8 V+ AND V- LOADED EXTERNAL POWER SUPPLY 1F CAPACITORS 12 10 40kb/s DATA RATE 8 TRANSMITTERS LOADED WITH 3k 8 6 4 VCC = 5V EXTERNAL CHARGE PUMP 1F CAPACITORS 8 TRANSMITTERS DRIVING 5k AND 2000pF AT 20kbits/sec 2 0 -2 EITHER V+ OR V- LOADED 2 3 LOAD CAPACITANCE (nF) 4 5 40kb/sec 7.0 60kb/sec 6.0 V+ AND V- LOADED 100kb/sec 200kb/sec 5.5 -8 1 20kb/sec 7.5 V- LOADED V+ LOADED -10 0 8.0 6.5 -4 -6 2 VCC = 5V WITH ALL TRANSMITTERS DRIVEN LOADED WITH 5k 10kb/sec 8.5 V+, V (V) OUTPUT VOLTAGE (V) 6 14 9.0 MAX220-11 VCC = 5V 4 10 10 MAX220-10 18 16 TRANSMITTER OUTPUT VOLTAGE (V+, V-) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES OUTPUT VOLTAGE vs. LOAD CURRENT FOR V+ AND V- MAX220-12 TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE TRANSMITTER SLEW RATE (V/s) MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ALL CAPACITIORS 1F 5.0 0 5 10 15 20 25 LOAD CURRENT (mA) 30 35 0 1 2 3 LOAD CAPACITANCE (nF) ______________________________________________________________________________________ 4 5 +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +3V 0V* +3V 50% 50% 50% 50% INPUT INPUT 0V VCC OUTPUT V+ 0V V- OUTPUT GND tPLHR tPLHS tPHLR tPHLS tPHLT tPLHT *EXCEPT FOR R2 ON THE MAX243 WHERE -3V IS USED. Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay Timing EN RX OUT RX IN 1k RX VCC - 2V SHDN +3V 0V a) TEST CIRCUIT 150pF EN INPUT OUTPUT DISABLE TIME (tDT) +3V V+ 0V +5V EN OUTPUT ENABLE TIME (tER) 0V -5V +3.5V V- RECEIVER OUTPUTS +0.8V a) TIMING DIAGRAM b) ENABLE TIMING +3V EN INPUT EN 1 OR 0 0V TX 3k OUTPUT DISABLE TIME (tDR) VOH VOH - 0.5V RECEIVER OUTPUTS VOL 50pF VCC - 2V VOL + 0.5V b) TEST CIRCUIT c) DISABLE TIMING Figure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable Timing ______________________________________________________________________________________ 11 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Table 1a. MAX245 Control Pin Configurations ENT ENR 0 0 Normal Operation 0 1 1 0 1 1 OPERATION STATUS TRANSMITTERS RECEIVERS All Active All Active Normal Operation All Active All 3-State Shutdown All 3-State All Low-Power Receive Mode Shutdown All 3-State All 3-State Table 1b. MAX245 Control Pin Configurations TRANSMITTERS RECEIVERS OPERATION STATUS TA1-TA4 TB1-TB4 0 Normal Operation All Active All Active All Active All Active 0 1 Normal Operation All Active All Active RA1-RA4 3-State, RA5 Active RB1-RB4 3-State, RB5 Active 1 0 Shutdown All 3-State All 3-State All Low-Power Receive Mode All Low-Power Receive Mode 1 1 Shutdown All 3-State All 3-State RA1-RA4 3-State, RA5 Low-Power Receive Mode RB1-RB4 3-State, RB5 Low-Power Receive Mode ENT ENR 0 RA1-RA5 RB1-RB5 Table 1c. MAX246 Control Pin Configurations 12 ENA ENB 0 0 0 OPERATION STATUS TRANSMITTERS RECEIVERS TA1-TA4 TB1-TB4 RA1-RA5 Normal Operation All Active All Active All Active All Active 1 Normal Operation All Active All 3-State All Active RB1-RB4 3-State, RB5 Active 1 0 Shutdown All 3-State All Active RA1-RA4 3-State, RA5 Active All Active 1 1 Shutdown All 3-State All 3-State RA1-RA4 3-State, RA5 Low-Power Receive Mode RB1-RB4 3-State, RA5 Low-Power Receive Mode ______________________________________________________________________________________ RB1-RB5 +5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTERS ENTA ENTB ENRA ENRB OPERATION STATUS RECEIVERS MAX247 TA1-TA4 TB1-TB4 RA1-RA4 RB1-RB5 MAX248 TA1-TA4 TB1-TB4 RA1-RA4 RB1-RB4 TA1-TA3 TB1-TB3 0 0 0 0 Normal Operation MAX249 All Active All Active All Active RA1-RA5 All Active RB1-RB5 0 0 0 1 Normal Operation All Active All Active All Active All 3-State, except RB5 stays active on MAX247 0 0 1 0 Normal Operation All Active All Active All 3-State All Active 0 0 1 1 Normal Operation All Active All Active All 3-State All 3-State, except RB5 stays active on MAX247 0 1 0 0 Normal Operation All Active All 3-State All Active All Active 0 1 0 1 Normal Operation All Active All 3-State All Active All 3-State, except RB5 stays active on MAX247 0 1 1 0 Normal Operation All Active All 3-State All 3-State All Active 0 1 1 1 Normal Operation All Active All 3-State All 3-State All 3-State, except RB5 stays active on MAX247 1 0 0 0 Normal Operation All 3-State All Active All Active All Active 1 0 0 1 Normal Operation All 3-State All Active All Active All 3-State, except RB5 stays active on MAX247 1 0 1 0 Normal Operation All 3-State All Active All 3-State All Active 1 0 1 1 Normal Operation All 3-State All Active All 3-State All 3-State, except RB5 stays active on MAX247 1 1 0 0 Shutdown All 3-State All 3-State Low-Power Receive Mode Low-Power Receive Mode 1 1 0 1 Shutdown All 3-State All 3-State Low-Power Receive Mode All 3-State, except RB5 stays active on MAX247 1 1 1 0 Shutdown All 3-State All 3-State All 3-State Low-Power Receive Mode 1 1 1 1 Shutdown All 3-State All 3-State All 3-State All 3-State, except RB5 stays active on MAX247 ______________________________________________________________________________________ 13 MAX220-MAX249 Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers _______________Detailed Description The MAX220-MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 drivers, RS-232 receivers, and receiver and transmitter enable control inputs. Dual Charge-Pump Voltage Converter The MAX220-MAX249 have two internal charge-pumps that convert +5V to 10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to double the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output. A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section), except on the MAX225 and MAX245-MAX247, where these pins are not available. V+ and V- are not regulated, so the output voltage drops with increasing load current. Do not load V+ and V- to a point that violates the minimum 5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222, MAX225, MAX230, MAX235, MAX236, MAX240, MAX241, and MAX245-MAX249, avoid using V+ and Vto power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applications where a +10V external supply is applied to the V+ pin (instead of using the internal charge pump to generate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to VCC. This is because V+ is internally connected to VCC in shutdown mode. RS-232 Drivers The typical driver output voltage swing is 8V when loaded with a nominal 5k RS-232 receiver and VCC = +5V. Output swing is guaranteed to meet the EIA/TIA232E and V.28 specification, which calls for 5V minimum driver output levels under worst-case conditions. These include a minimum 3k load, VCC = +4.5V, and maximum operating temperature. Unloaded driver output voltage ranges from (V+ -1.3V) to (V- +0.5V). Input thresholds are both TTL and CMOS compatible. The inputs of unused drivers can be left unconnected since 400k input pull-up resistors to VCC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert. The internal input pull-up resistors typically source 12A, except in shutdown mode where the pull-ups are disabled. Driver outputs turn off and enter a high-impedance state--where leakage current is typically microamperes (maximum 25A)--when in shutdown 14 mode, in three-state mode, or when device power is removed. Outputs can be driven to 15V. The powersupply current typically drops to 8A in shutdown mode. The MAX220 does not have pull-up resistors to force the outputs of the unused drivers low. Connect unused inputs to GND or VCC. The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240, and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver threestate control on the receiver outputs. The receiver TTL/CMOS outputs are in a high-impedance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239- MAX241), and are also high-impedance whenever the shutdown control line is high. When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1A with the driver output pulled to ground. The driver output leakage remains less than 1A, even if the transmitter output is backdriven between 0V and (VCC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1k series impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1k. The driver output slew rate is limited to less than 30V/s as required by the EIA/TIA-232E and V.28 specifications. Typical slew rates are 24V/s unloaded and 10V/s loaded with 3 and 2500pF. RS-232 Receivers EIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert. Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels. The receiver inputs withstand an input overvoltage up to 25V and provide input terminating resistors with Table 2. Three-State Control of Receivers PART SHDN SHDN EN(R) RECEIVERS X Low High EN __ High Impedance Active High Impedance MAX223 __ Low High High MAX225 __ __ __ Low High High Impedance Active MAX235 MAX236 MAX240 Low Low High __ __ Low High X High Impedance Active High Impedance ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear output transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction. Low-Power Receive Mode The low-power receive-mode feature of the MAX223, MAX242, and MAX245-MAX249 puts the IC into shutdown mode but still allows it to receive information. This is important for applications where systems are periodically awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communication at faster data rates. This operation conserves system power. Negative Threshold--MAX243 The MAX243 is pin compatible with the MAX232A, differing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment. The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or "OK to send" state. Normally the MAX243's other receiver (+1.4V threshold) is used for the data line (TD or RD) while the negative threshold receiver is connected to the control line (DTR DTS CTS RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA232E specifications. This means a receiver output goes high whenever its input is driven negative left floating or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this the control lines must either be driven or connected with jumpers to an appropriate positive voltage level. Shutdown--MAX222-MAX242 On the MAX222 MAX235 MAX236 MAX240 and MAX241 all receivers are disabled during shutdown. On the MAX223 and MAX242 two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions the propagation delay increases to about 2.5s for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices SHDN (SHDN for MAX241) also disables the receiver outputs. The MAX225 provides five transmitters and five receivers while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply current drops to less than 25A and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225 all five receivers are controlled by the ENR input. On the MAX245 eight of the receiver outputs are controlled by the ENR input while the remaining two receivers (RA5 and RB5) are always active. RA1-RA4 and RB1-RB4 are put in a three-state mode when ENR is a logic high. Receiver and Transmitter Enable Control Inputs The MAX225 and MAX245-MAX249 feature transmitter and receiver enable controls. The receivers have three modes of operation: full-speed receive (normal active) three-state (disabled) and lowpower receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown. ______________________________________________________________________________________ 15 MAX220-MAX249 nominal 5k values. The receivers implement Type 1 interpretation of the fault conditions of V.28 and EIA/TIA-232E. MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Tables 1a-1d define the control states. The MAX244 has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA) causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one Aside and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shutdown mode when both the A and B sides are disabled (ENA = ENB = +5V). The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active. The device enters shutdown mode with a logic high on both ENTA and ENTB. The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. 16 The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three drivers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec. __________Applications Information Figures 5 through 25 show pin configurations and typical operating circuits. In applications that are sensitive to power-supply noise, VCC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device. ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +5V INPUT C3 TOP VIEW C5 C1+ 1 1 16 VCC C1 V+ 2 15 GND C1- 3 14 T1OUT C2+ 4 C2- 5 MAX220 MAX232 MAX232A V- 6 C2 12 R1OUT 9 11 T1IN -10V C4 T1OUT 14 RS-232 OUTPUTS 400k T2OUT 7 10 T2IN R2OUT 12 R1OUT CAPACITANCE (F) C1 C2 C3 C4 4.7 4.7 10 10 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.1 6 +5V TTL/CMOS INPUTS DIP/SO DEVICE MAX220 MAX232 MAX232A V- +5V 400k 10 T2IN R2IN 8 V+ 2 +10V 3 C14 C2+ +10V TO -10V 5 C2- VOLTAGE INVERTER 13 R1IN 11 T1IN T2OUT 7 16 VCC +5V TO +10V VOLTAGE DOUBLER C1+ R1IN 13 TTL/CMOS OUTPUTS C5 4.7 1.0 0.1 RS-232 INPUTS 5k R2IN 8 9 R2OUT 5k GND 15 Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit +5V INPUT C3 ALL CAPACITORS = 0.1F TOP VIEW C5 17 VCC 3 +10V C1+ +5V TO +10V V+ 4 C1- VOLTAGE DOUBLER 5 C2+ 7 -10V +10V TO -10V V6 C2C4 VOLTAGE INVERTER 2 (N.C.) EN 1 (N.C.) EN 1 18 SHDN C1+ 2 19 VCC 18 GND 17 T1OUT C1+ 2 17 VCC V+ 3 V+ 3 16 GND C1- 4 C1- 4 15 T1OUT C2+ 5 14 R1IN C2- 6 C2+ 5 C2- 6 MAX222 MAX242 13 R1OUT MAX222 MAX242 15 R1IN V- 7 14 R1OUT 12 T1IN T2OUT 8 13 N.C. T2OUT 8 11 T2IN R2IN 9 12 T1IN R2OUT 10 11 T2IN 10 R2OUT DIP/SO C2 +5V 16 N.C. V- 7 R2IN 9 C1 20 SHDN TTL/CMOS INPUTS 400k 12 T1IN +5V (EXCEPT MAX220) 400k 11 T2IN (EXCEPT MAX220) T1OUT 15 T2OUT 8 13 R1OUT R1IN 14 TTL/CMOS OUTPUTS SSOP RS-232 INPUTS 5k R2IN 9 10 R2OUT 1 (N.C.) EN ( ) ARE FOR MAX222 ONLY. PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIP/SO PACKAGES ONLY. RS-232 OUTPUTS 5k SHDN GND 18 16 Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit ______________________________________________________________________________________ 17 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 0.1 +5V 28 VCC 27 VCC 400k T1IN 3 ENR 1 28 VCC ENR 2 27 VCC T1IN 3 26 ENT T2IN 4 R1OUT 5 T2IN 4 23 T5IN R3OUT 7 22 R4OUT R3IN 8 21 R5OUT R2IN 9 20 R5IN R1IN 10 18 T3OUT T2OUT 12 17 T4OUT GND 13 16 T5OUT GND 14 15 T5OUT T3IN 25 12 T3OUT +5V 18 400k T4IN 24 +5V T4OUT 17 400k 19 R4IN T1OUT 11 T2OUT +5V 400k 24 T4IN R2OUT 6 11 400k 25 T3IN MAX225 T1OUT +5V T5OUT T5IN 23 ENT 26 T5OUT R1OUT 5 R1IN 16 15 10 5k SO R2OUT 6 R2IN 9 5k R3OUT 7 MAX225 FUNCTIONAL DESCRIPTION 5 RECEIVERS 5 TRANSMITTERS 2 CONTROL PINS 1 RECEIVER ENABLE (ENR) 1 TRANSMITTER ENABLE (ENT) R3IN 8 R4IN 19 5k R4OUT 22 5k R5OUT 21 R5IN 5k PINS (ENR, GND, VCC, T5OUT) ARE INTERNALLY CONNECTED. CONNECT EITHER OR BOTH EXTERNALLY. T5OUT IS A SINGLE DRIVER. 1 2 ENR ENR GND 13 GND 14 Figure 7. MAX225 Pin Configuration and Typical Operating Circuit 18 ______________________________________________________________________________________ 20 +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +5V INPUT TOP VIEW 1.0F 12 11 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0F 14 C115 C2+ 1.0F 16 C2- +10V TO -10V VOLTAGE INVERTER T1OUT 2 27 R3IN T2OUT 3 26 R3OUT R2IN 4 25 SHDN (SHDN) R2OUT 5 T2IN 6 24 EN (EN) MAX223 MAX241 T1IN 7 400k 6 T2IN 21 T4IN R1IN 9 20 T3IN GND 10 19 R5OUT* VCC 11 18 R5IN* C1+ 12 17 V- V+ 13 16 C2- C1- 14 15 C2+ Wide SO/ SSOP RS-232 OUTPUTS 400k 20 T3IN T3OUT 1 T3 23 R4IN* R1OUT 8 T2OUT 3 T2 +5V 22 R4OUT* T1OUT 2 T1 +5V TTL/CMOS INPUTS 17 400k 7 T1IN 28 T4OUT V- 13 1.0F +5V T3OUT 1 1.0F V+ +5V 21 T4IN 8 R1OUT 400k T4OUT 28 T4 R1IN 9 R1 5k 5 R2OUT R2IN 4 R2 5k LOGIC OUTPUTS 26 R3OUT R3 R3IN 27 R4IN 23 R5IN 18 5k 22 R4OUT R4 RS-232 INPUTS 5k 19 R5OUT R5 *R4 AND R5 IN MAX223 REMAIN ACTIVE IN SHUTDOWN NOTE: PIN LABELS IN ( ) ARE FOR MAX241 5k 24 EN (EN) GND SHDN 25 (SHDN) 10 Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 19 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.0F 1.0F 20 T4OUT 1 T1OUT 2 19 T5IN T2OUT 3 18 N.C. T2IN 4 1.0F 17 SHDN MAX230 T1IN 5 16 T5OUT GND 6 15 T4IN VCC 7 14 T3IN C1+ 8 13 V- V+ 9 12 C2- C1- 10 11 C2+ 11 +10V TO -10V C2+ 12 VC2- VOLTAGE INVERTER +5V 400k T1OUT 5 T1IN T1 +5V 400k T2OUT 4 T2IN T2 +5V 400k T3OUT 14 T3IN T3 +5V 400k T4OUT 15 T4IN T4 +5V 400k T5OUT 19 T5IN T5 T1 T3OUT 7 VCC V+ 9 +5V TO +10V VOLTAGE DOUBLER 8 C1+ 10 C1- TTL/CMOS INPUTS DIP/SO N.C. x 18 1.0F 13 1.0F 2 3 RS-232 OUTPUTS 1 20 16 17 GND SHDN 6 Figure 9. MAX230 Pin Configuration and Typical Operating Circuit +5V INPUT TOP VIEW +7.5V TO +12V 1.0F 13 (15) 1 2 1.0F C+ 1 CV- 2 3 T2OUT 4 MAX231 R2IN 5 14 V+ C+ 1 16 V+ 13 VCC C- 2 15 VCC 12 GND V- 3 11 T1OUT T2OUT 4 10 R1IN R2IN 5 R2OUT 6 9 R1OUT T2IN 7 8 T1IN 13 T1OUT 8 10 T1IN N.C. 8 9 N.C. DIP SO T1IN T1OUT 11 T1 (13) RS-232 OUTPUTS (11) 7 T2IN 9 R1OUT T2OUT 4 T2 R1IN 10 R1 TTL/CMOS INPUTS 5k 6 R2OUT R2IN 5 R2 (12) RS-232 INPUTS GND 12 (14) Figure 10. MAX231 Pin Configurations and Typical Operating Circuit 20 C2 1.0F 400k 5k PIN NUMBERS IN ( ) ARE FOR SO PACKAGE (16) 3 +5V TTL/CMOS INPUTS 11 R1OUT T2IN 7 V- 14 400k (10) 12 R1IN R2OUT 6 C1- V+ +5V 14 GND MAX231 VCC +12V TO -12V VOLTAGE CONVERTER C1+ ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +5V INPUT 1.0F TOP VIEW 7 VCC +5V 400k T2IN 20 R2OUT 1 T1IN 2 19 R2IN R1OUT 3 GND 6 17 V- MAX233 MAX233A (V+) C1+ 14 V+ (C1-) GND 9 12 V- (C2+) (V-) CS- 10 RS-232 OUTPUTS 400k 1 T2IN 3 R1OUT T2OUT 18 R1IN 4 11 C2+ (C2-) DIP/SO 5k TTL/CMOS OUTPUTS 20 R2OUT 13 C1- (C1+) 8 +5V 16 C215 C2+ VCC 7 T1OUT 5 T1IN TTL/CMOS INPUTS 18 T2OUT R1IN 4 T1OUT 5 2 8 (13) DO NOT MAKE CONNECTIONS TO 13 (14) THESE PINS 12 (10) INTERNAL -10 17 POWER SUPPLY INTERNAL +10V POWER SUPPLY RS-232 OUTPUTS R2IN 19 5k C1+ C1- C2+ V- C2- V14 (8) V+ C2GND 11 (12) C2+ 15 16 10 (11) GND 6 9 ( ) ARE FOR SO PACKAGE ONLY. Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit +5V INPUT 1.0F TOP VIEW 7 1.0F 9 10 T1OUT 1 16 T3OUT T2OUT 2 15 T4OUT T2IN 3 T1IN 4 1.0F C2+ 11 C2- 12 V- VCC 6 11 C2- C1+ 7 10 C2+ 9 C1- +10V TO -10V VOLTAGE INVERTER 1.0F 8 V+ V- 12 1.0F 400k 4 T1IN 13 T3IN GND 5 V+ 8 C1- 6 VCC +5V TO +10V VOLTAGE DOUBLER +5V 14 T4IN MAX234 C1+ T1 T1OUT 1 +5V 400k 3 T2IN T2 T2OUT 3 +5V TTL/CMOS INPUTS RS-232 OUTPUTS 400k 13 T3IN T3 T3OUT 16 +5V DIP/SO 400k 14 T4IN T4 T4OUT 15 GND 5 Figure 12. MAX234 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 21 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.0F 12 VCC +5V 400k 8 T1IN T1 T1OUT 3 T2 T2OUT 4 +5V 400k 7 T2IN +5V 400k TTL/CMOS INPUTS T4OUT 1 24 R3IN T3OUT 2 23 R3OUT T1OUT 3 22 T5IN T2OUT 4 21 SHDN R2IN 5 MAX235 15 T3IN T3OUT 2 T3 RS-232 OUTPUTS +5V 400k 16 T4IN +5V 20 EN 22 T5IN T4OUT 1 T4 400k T5OUT 19 T5 19 T5OUT R2OUT 6 T2IN 7 18 R4IN T1IN 8 17 R4OUT R1OUT 9 16 T4IN R1IN 10 15 T3IN GND 11 14 R5OUT VCC 12 13 R5IN DIP 9 R1OUT R1IN 10 T1 5k 6 R2OUT R2IN 5 R2 5k TTL/CMOS OUTPUTS 23 R3OUT R3IN 24 R3 RS-232 INPUTS 5k 17 R4OUT R4IN 18 R4 5k 14 R5OUT R5IN 13 R5 5k 20 EN SHDN 21 GND 11 Figure 13. MAX235 Pin Configuration and Typical Operating Circuit 22 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 TOP VIEW +5V INPUT 1.0F 9 10 1.0F 12 13 1.0F 1.0F VCC +5V TO +10V VOLTAGE DOUBLER C1+ C1- V+ C2+ V- +10V TO -10V VOLTAGE INVERTER 14 C2- 11 15 1.0F +5V 400k 7 T1IN T3OUT 1 24 T4OUT T1OUT 2 23 R2IN T2OUT 3 22 R2OUT R1IN 4 R1OUT 5 21 SHDN MAX236 +5V 400k 6 T2IN TTL/CMOS INPUTS 19 T4IN T1IN 7 18 T3IN GND 8 17 R3OUT VCC 9 16 R3IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ T2OUT T2 3 RS-232 OUTPUTS +5V 400k 20 EN T2IN 6 T1OUT 2 T1 18 T3IN T3OUT 1 T3 +5V 400k 19 T4IN 5 R1OUT T4OUT 24 T4 R1IN 4 R1 5k DIP/SO TTL/CMOS OUTPUTS 22 R2OUT R2 R2IN 23 R3IN 16 RS-232 INPUTS 5k 17 R3OUT R3 5k 20 EN SHDN 21 GND 8 Figure 14. MAX236 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 23 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW +5V INPUT 1.0F 10 1.0F 12 13 1.0F 14 C1C2+ C2- 24 T4OUT T1OUT 2 23 R2IN T2OUT 3 22 R2OUT R1IN 4 R1OUT 5 MAX237 20 T5OUT T2IN 6 19 T4IN T1IN 7 18 T3IN GND 8 17 R3OUT VCC 9 16 R3IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 400k TTL/CMOS INPUTS T2OUT T2 +5V 3 400k 18 T3IN T3OUT 1 T3 +5V 1.0F T1OUT 2 T1 6 T2IN 21 T5IN 15 V- 400k 7 T1IN +5V 11 V+ +10V TO -10V VOLTAGE INVERTER +5V T3OUT 1 1.0F 9 VCC +5V TO +10V VOLTAGE DOUBLER C1+ RS-232 OUTPUTS 400k 19 T4IN T4OUT 24 T4 +5V 400k 21 T5IN DIP/SO 5 R1OUT T5OUT 20 T5 R1IN 4 R1 5k TTL/CMOS OUTPUTS 22 R2OUT R2 R2IN 23 R3IN 16 5k 17 R3OUT R3 5k GND 8 Figure 15. MAX237 Pin Configuration and Typical Operating Circuit 24 ______________________________________________________________________________________ RS-232 INPUTS +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 TOP VIEW +5V INPUT 1.0F 1.0F 9 10 1.0F 12 13 1.0F 14 VCC +5V TO +10V VOLTAGE DOUBLER C1+ C1C2+ 23 R3IN T1OUT 2 22 R3OUT R2IN 3 R2OUT 4 T1IN 5 MAX238 20 T4OUT R1OUT 6 19 T3IN R1IN 7 18 T2IN GND 8 17 R4OUT VCC 9 16 R4IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 6 R1OUT RS-232 OUTPUTS T3OUT 24 T3 +5V 1 400k 19 T3IN 21 T4IN T2OUT T2 +5V TTL/CMOS INPUTS T1OUT 2 400k 18 T2IN 21 T4IN 15 1.0F T1 +5V 11 400k 5 T1IN 24 T3OUT V- +10V TO -10V VOLTAGE INVERTER C2+5V T2OUT 1 V+ 400k T4OUT 20 T4 R1IN 7 R1 5k DIP/SO 4 R2OUT R2IN R2 TTL/CMOS OUTPUTS 3 RS-232 INPUTS 5k 22 R3OUT R3 R3IN 23 R4IN 16 5k 17 R4OUT R4 5k GND 8 Figure 16. MAX238 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 25 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW 7.5V TO 13.2V INPUT +5V INPUT 1.0F 4 6 1.0F 7 5 VCC C1+ V+ C1- +5V 24 T1IN R1IN 2 23 T2IN GND 3 22 R2OUT VCC 4 V+ 5 TTL/CMOS INPUTS C+ 6 19 T1OUT C- 7 18 R3IN V- 8 17 R3OUT R5IN 9 16 T3IN R5OUT 10 15 N.C. R4OUT 11 14 EN 16 T3IN 1 R1OUT T2OUT T2 +5V 20 T2OUT T1OUT 19 400k 23 T2IN 21 R2IN MAX239 1.0F T1 +5V 8 400k 24 T1IN R1OUT 1 V- +10V TO -10V VOLTAGE INVERTER 20 RS-232 OUTPUTS 400k T3OUT 13 T3 R1IN 2 R1 5k 22 R2OUT 13 T3OUT R4IN 12 R2IN 21 R2 5k DIP/SO TTL/CMOS OUTPUTS 17 R3OUT R3 R3IN 18 R4IN 12 R5IN 9 5k 11 R4OUT R4 5k 10 R5OUT R5 5k 14 EN N.C. GND 3 Figure 17. MAX239 Pin Configuration and Typical Operating Circuit 26 ______________________________________________________________________________________ 15 RS-232 INPUTS +5V-Powered, Multichannel RS-232 Drivers/Receivers 1.0F 25 19 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0F 27 C128 C2+ 1.0F 29 C2- N.C. R2IN N.C. T2OUT T1OUT T3OUT T4OUT R3IN R3OUT T5IN N.C. 11 10 9 8 7 6 5 4 3 2 1 37 T3IN N.C. N.C. C1+ V+ C1C2+ C2 VN.C. N.C. N.C. T3OUT 6 T3 +5V 2 T5IN 16 R1OUT RS-232 OUTPUTS 400k 38 T4IN +5V 8 400k T4OUT 5 T4 400k T5OUT T5 41 R1IN 17 R1 5k 13 R2OUT R2IN 10 R2 23 24 25 26 27 28 29 30 31 32 33 MAX240 T2OUT T2 +5V N.C. SHDN EN T5OUT R4IN R4OUT T4IN T3IN R5OUT R5IN N.C. T1OUT 7 400k 14 T2IN 44 43 42 41 40 39 38 37 36 35 34 30 400k T1 +5V 12 13 14 15 16 17 18 19 20 21 22 V- 26 1.0F 15 T1IN TTL/CMOS INPUTS 1.0F V+ +5V TO -10V VOLTAGE INVERTER +5V N.C. R2OUT T2IN T1IN R1OUT R1IN GND VCC N.C. N.C. N.C. MAX220-MAX249 +5V INPUT TOP VIEW 5k TTL/CMOS OUTPUTS 3 R3OUT R3 R3IN 4 R4IN 40 R5IN 35 5k RS-232 INPUTS Plastic FP 39 R4OUT R4 5k 36 R5OUT R5 5k 42 EN GND SHDN 43 18 Figure 18. MAX240 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 27 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ALL CAPACITORS = 0.1F 0.1F +5V INPUT TOP VIEW 0.1F 1 C1+ 1 16 VCC V+ 2 0.1F 3 C14 C2+ 0.1F 5 C2- 15 GND C1- 3 C2+ 4 C1+ C2- 5 T2OUT 7 10 T2IN 9 R2IN 8 V- +10V 6 -10V 0.1F 11 T1IN 12 R1OUT 11 T1IN +10V TO -10V VOLTAGE INVERTER 2 400k 13 R1IN V- 6 V+ +5V 14 T1OUT MAX243 16 VCC +5V TO +10V VOLTAGE DOUBLER T1OUT 14 +5V TTL/CMOS INPUTS RS-232 OUTPUTS 400k T2OUT 7 10 T2IN R2OUT DIP/SO 12 R1OUT R1IN 13 TTL/CMOS OUTPUTS R2IN 8 9 R2OUT RECEIVER INPUT -3 V OPEN +3V R1 OUTPUT HIGH HIGH LOW R2 OUTPUT HIGH LOW LOW 5k GND 15 Figure 19. MAX243 Pin Configuration and Typical Operating Circuit 28 RS-232 INPUTS 5k ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +5V TOP VIEW 1F 1F 20 VCC +5V TO +10V VOLTAGE DOUBLER TA2OUT TA1OUT TB1OUT TB4OUT TA3OUT 6 5 4 3 2 1 44 43 42 41 40 RB5IN TA4OUT TB3OUT RA4IN 1F RA5IN TB2OUT 21 1F C1+ 23 C124 C2+ 25 C2- 22 V+ 26 V- 1F +10V TO -10V VOLTAGE INVERTER 2 TA1OUT +5V +5V TB1OUT 44 400k RA3IN 7 39 RB4IN RA2IN 8 38 RB3IN RA1IN 9 37 RB2IN RA1OUT 10 36 RB1IN RA2OUT 11 35 RB1OUT RA3OUT 12 RA4OUT 13 33 RB3OUT RA5OUT 14 32 RB4OUT TA1IN 15 31 RB5OUT TA2IN 16 30 TB1IN TA3IN 17 29 TB2IN MAX244 PLCC TB1IN 30 +5V +5V 2 TA2OUT TB2OUT 43 400k 16 TA2IN TB2IN 29 +5V +5V 3 TA3OUT TB3OUT 42 400k 17 TA3IN TB3IN 28 +5V +5V 4 TA4OUT TB4OUT 41 400k 18 TA4IN TB4IN 27 9 RA1IN RB1IN 36 TB3IN TB4IN V- C2- C2+ C1- V+ GND VCC 19 20 21 22 23 24 25 26 27 28 C1+ 18 TA4IN 34 RB2OUT 15 TA1IN 5k 5k 10 RA1OUT RB1OUT 35 8 RA2IN MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVER 5 B-SIDE RECEIVER 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS NO CONTROL PINS RB2IN 37 5k 5k 11 RA2OUT RB2OUT 34 7 RA3IN RB3IN 38 5k 5k 12 RA3OUT RB3OUT 33 6 RA4IN RB4IN 39 5k 5k 13 RA4OUT RB4OUT 32 5 RA5IN RB5IN 40 5k 14 RA5OUT 5k GND 19 RB5OUT 31 Figure 20. MAX244 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 29 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1F 40 VCC ENR 40 1 VCC TA1IN 2 39 ENT TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 35 TB4IN RA4OUT 7 34 RB5OUT MAX245 RA3OUT 8 33 RB4OUT RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT GND 19 22 TB3OUT 20 21 TB4OUT +5V +5V 16 TA1OUT 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 1 ENR ENT 39 11 RA1IN RB1IN 29 5k 5k 10 RA1OUT RB1OUT 30 12 RA2IN RB2IN 28 5k 5k RB2OUT 31 13 RA3IN RB3IN 27 5k MAX245 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE) 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTTERS 4 A-SIDE TRANSMITTERS 2 CONTROL PINS 1 RECEIVER ENABLE (ENR) 1 TRANSMITTER ENABLE (ENT) TB2OUT 23 400k 9 RA2OUT DIP TB1OUT 24 400k 5k 8 RA3OUT RB3OUT 32 14 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 33 15 RA5IN RB5IN 25 5k 5k 6 RA5OUT RB5OUT 34 GND 20 Figure 21. MAX245 Pin Configuration and Typical Operating Circuit 30 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 +5V TOP VIEW 1F ENA 1 40 VCC TA1IN 2 39 ENB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 RA4OUT 7 RA3OUT 8 MAX246 35 TB4IN 34 RB5OUT 33 RB4OUT RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT 19 22 TB3OUT GND 20 21 TB4OUT DIP 40 VCC +5V +5V 16 TA1OUT TB1OUT 24 400k 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT TB2OUT 23 400k 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 1 ENA ENB 39 11 RA1IN RB1IN 29 5k 5k 10 RA1OUT RB1OUT 30 12 RA2IN RB2IN 28 5k 5k 9 RA2OUT RB2OUT 31 13 RA3IN MAX246 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE) 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 2 CONTROL PINS ENABLE A-SIDE (ENA) ENABLE B-SIDE (ENB) RB3IN 27 5k 5k 8 RA3OUT RB3OUT 32 14 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 33 15 RA5IN RB5IN 25 5k 6 RA5OUT 5k RB5OUT 34 GND 20 Figure 22. MAX246 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 31 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1F 40 VCC +5V +5V 1 ENTA ENTA 1 40 VCC TA1IN 2 39 ENTB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RB5OUT 6 35 TB4IN RA4OUT 7 34 RB4OUT RA3OUT 8 33 RB3OUT MAX247 RA2OUT 9 32 RB2OUT RA1OUT 10 31 RB1OUT ENRA 11 30 ENRB RA1IN 12 29 RB1IN RA2IN 13 28 RB2IN RA3IN 14 27 RB3IN RA4IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT 19 22 TB3OUT GND 20 21 TB4OUT 16 TA1OUT ENTB 39 TB1OUT 24 400k 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT TB2OUT 23 400k 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 6 RB5OUT RB5IN 25 5k RB1IN 29 12 RA1IN 5k 5k RB1OUT 31 10 RA1OUT 13 RA2IN RB2IN 28 DIP 5k MAX247 FUNCTIONAL DESCRIPTION 9 RECEIVERS 4 A-SIDE RECEIVERS 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVERr B-SIDE (ENTB) 5k 9 RA2OUT RB2OUT 32 14 RA3IN RB3IN 27 5k 5k 8 RA3OUT RB3OUT 33 15 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 34 11 ENRA ENRB 30 GND 20 Figure 23. MAX247 Pin Configuration and Typical Operating Circuit 32 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220-MAX249 TOP VIEW +5V 1F 1F 20 5 4 3 2 1 1F RB4IN TA4OUT TB3OUT TB2OUT TB1OUT TA1OUT TA2OUT TA3OUT TA4OUT RA3IN 6 RA4IN 21 1F 44 43 42 41 40 C1+ 23 C124 C2+ 25 C2- VCC +5V TO +10V VOLTAGE DOUBLER V+ V- +5V 1 TA1OUT 39 RB3IN RA1IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT RA3OUT 12 RA4OUT 13 33 RB3OUT TA1IN 14 32 RB4OUT MAX248 34 RB2OUT 31 TB1IN 16 30 TB2IN TA4IN 17 29 TB3IN TB4IN ENTB V- C2- C2+ C1- V+ VCC C1+ 18 19 20 21 22 23 24 25 26 27 28 GND 15 TA3IN ENTA TA2IN PLCC TB1OUT 44 400k 14 TA1IN TB1IN 31 +5V +5V 2 TA2OUT TB2OUT 43 400k 15 TA2IN TB2IN 30 +5V +5V 3 TA3OUT TB3OUT 42 400k 16 TA3IN TB3IN 29 +5V +5V 4 TA4OUT TB4OUT 41 400k 17 TA4IN TB4IN 28 8 RA1IN RB1IN 37 5k MAX248 FUNCTIONAL DESCRIPTION 8 RECEIVERS 4 A-SIDE RECEIVERS 4 B-SIDE RECEIVERS 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVER B-SIDE (ENTB) 1F ENTB 27 +5V 7 26 +10V TO -10V VOLTAGE INVERTER 18 ENTA RA2IN 22 5k 10 RA1OUT RB1OUT 35 7 RA2IN RB2IN 38 5k 5k 11 RA2OUT RB2OUT 34 6 RA3IN RB3IN 39 5k 5k 12 RA3OUT RB3OUT 33 5 RA4IN RB4IN 40 5k 5k 13 RA4OUT RB4OUT 32 9 ENRA ENRB 36 GND 19 Figure 24. MAX248 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 33 MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1F 1F 20 TA1OUT TB1OUT 5 4 3 2 1 44 43 42 41 40 1F RB4IN TA2OUT TB3OUT TA3OUT 6 RB5IN RA5IN TB2OUT RA3IN RA4IN 21 1F C1+ 23 C124 C2+ 25 C2- VCC +5V TO +10V VOLTAGE DOUBLER V+ V- 7 39 RB3IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT RA3OUT 12 MAX249 34 RB2OUT RA4OUT 13 33 RB3OUT RA5OUT 14 32 RB4OUT TA1IN 15 31 RB5OUT TA2IN 16 30 TB1IN 29 TB2IN TB3IN ENTB V- C2- C2+ C1- V+ VCC 19 20 21 22 23 24 25 26 27 28 C1+ 18 GND 17 ENTA TA3IN PLCC +5V TB1OUT 44 400k 15 TA1IN TB1IN 30 +5V +5V 2 TA2OUT TB2OUT 43 400k 16 TA2IN TB2IN 29 +5V +5V 3 TA3OUT TB3OUT 42 400k 17 TA3IN TB3IN 28 8 RA1IN RB1IN 37 5k 5k 10 RA1OUT RB1OUT 35 7 RA2IN RB2IN 38 5k MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS 5 B-SIDE RECEIVERS 6 TRANSMITTERS 3 A-SIDE TRANSMITTERS 3 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVER B-SIDE (ENTB) 5k 11 RA2OUT RB2OUT 34 RB3IN 39 6 RA3IN 5k 5k RB3OUT 33 12 RA3OUT RB4IN 40 5 RA4IN 5k 5k RB4OUT 32 13 RA4OUT RB5IN 41 4 RA5IN 5k 5k RB5OUT 31 14 RA5OUT 9 ENRA ENRB 36 GND 19 Figure 25. MAX249 Pin Configuration and Typical Operating Circuit 34 1F ENTB 27 +5V 1 TA1OUT RA2IN 26 +10V TO -10V VOLTAGE INVERTER 18 ENTA RA1IN 22 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers PIN-PACKAGE MAX232AC/D 0C to +70C MAX222CPN PART TEMP. RANGE 0C to +70C 18 Plastic DIP MAX232AEPE -40C to +85C 16 Plastic DIP MAX222CWN 0C to +70C 18 Wide SO MAX232AESE -40C to +85C 16 Narrow SO MAX222C/D 0C to +70C Dice* MAX232AEWE -40C to +85C 16 Wide SO MAX222EPN -40C to +85C 18 Plastic DIP MAX232AEJE -40C to +85C 16 CERDIP MAX222EWN -40C to +85C 18 Wide SO MAX232AMJE -55C to +125C 16 CERDIP MAX222EJN -40C to +85C 18 CERDIP MAX232AMLP -55C to +125C 20 LCC MAX222MJN -55C to +125C 18 CERDIP MAX233CPP 0C to +70C 20 Plastic DIP MAX223CAI 0C to +70C 28 SSOP MAX233EPP -40C to +85C 20 Plastic DIP MAX223CWI 0C to +70C 28 Wide SO MAX233ACPP 0C to +70C 20 Plastic DIP MAX223C/D 0C to +70C Dice* MAX233ACWP 0C to +70C 20 Wide SO MAX223EAI -40C to +85C 28 SSOP MAX233AEPP -40C to +85C 20 Plastic DIP MAX223EWI -40C to +85C 28 Wide SO MAX233AEWP -40C to +85C 20 Wide SO MAX225CWI 0C to +70C 28 Wide SO MAX234CPE 0C to +70C 16 Plastic DIP MAX225EWI -40C to +85C 28 Wide SO MAX234CWE 0C to +70C 16 Wide SO MAX230CPP 0C to +70C 20 Plastic DIP MAX234C/D 0C to +70C Dice* MAX230CWP 0C to +70C 20 Wide SO MAX234EPE -40C to +85C 16 Plastic DIP MAX230C/D 0C to +70C Dice* MAX234EWE -40C to +85C 16 Wide SO MAX230EPP -40C to +85C 20 Plastic DIP MAX234EJE -40C to +85C 16 CERDIP MAX230EWP -40C to +85C 20 Wide SO MAX234MJE -55C to +125C 16 CERDIP MAX230EJP -40C to +85C 20 CERDIP MAX235CPG 0C to +70C 24 Wide Plastic DIP MAX230MJP -55C to +125C 20 CERDIP MAX235EPG -40C to +85C 24 Wide Plastic DIP MAX231CPD 0C to +70C 14 Plastic DIP MAX235EDG -40C to +85C 24 Ceramic SB MAX231CWE 0C to +70C 16 Wide SO MAX235MDG -55C to +125C 24 Ceramic SB MAX231CJD 0C to +70C 14 CERDIP MAX236CNG 0C to +70C 24 Narrow Plastic DIP MAX231C/D 0C to +70C Dice* MAX236CWG 0C to +70C 24 Wide SO MAX231EPD -40C to +85C 14 Plastic DIP MAX236C/D 0C to +70C Dice* MAX231EWE -40C to +85C 16 Wide SO MAX236ENG -40C to +85C 24 Narrow Plastic DIP MAX231EJD -40C to +85C 14 CERDIP MAX236EWG -40C to +85C 24 Wide SO MAX231MJD -55C to +125C 14 CERDIP MAX236ERG -40C to +85C 24 Narrow CERDIP MAX232CPE 0C to +70C 16 Plastic DIP MAX236MRG -55C to +125C 24 Narrow CERDIP MAX232CSE 0C to +70C 16 Narrow SO MAX237CNG 0C to +70C 24 Narrow Plastic DIP MAX232CWE 0C to +70C 16 Wide SO MAX237CWG 0C to +70C 24 Wide SO MAX232C/D 0C to +70C Dice* MAX237C/D 0C to +70C Dice* MAX232EPE -40C to +85C 16 Plastic DIP MAX237ENG -40C to +85C 24 Narrow Plastic DIP MAX232ESE -40C to +85C 16 Narrow SO MAX237EWG -40C to +85C 24 Wide SO MAX232EWE -40C to +85C 16 Wide SO MAX237ERG -40C to +85C 24 Narrow CERDIP MAX232EJE -40C to +85C 16 CERDIP MAX237MRG -55C to +125C 24 Narrow CERDIP MAX232MJE -55C to +125C 16 CERDIP MAX238CNG 0C to +70C 24 Narrow Plastic DIP MAX232MLP -55C to +125C 20 LCC Dice* MAX238CWG 0C to +70C 24 Wide SO MAX232ACPE 0C to +70C 16 Plastic DIP MAX238C/D 0C to +70C Dice* MAX232ACSE 0C to +70C 16 Narrow SO MAX238ENG MAX232ACWE 0C to +70C 16 Wide SO -40C to +85C 24 Narrow Plastic DIP * Contact factory for dice specifications. ______________________________________________________________________________________ 35 MAX220-MAX249 ___________________________________________Ordering Information (continued) MAX220-MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ___________________________________________Ordering Information (continued) PIN-PACKAGE MAX243CPE 0C to +70C 16 Plastic DIP MAX238EWG PART -40C to +85C TEMP. RANGE 24 Wide SO MAX243CSE 0C to +70C 16 Narrow SO MAX238ERG -40C to +85C 24 Narrow CERDIP MAX243CWE 0C to +70C 16 Wide SO MAX238MRG -55C to +125C 24 Narrow CERDIP MAX243C/D 0C to +70C Dice* MAX239CNG 0C to +70C 24 Narrow Plastic DIP MAX243EPE -40C to +85C 16 Plastic DIP MAX239CWG 0C to +70C 24 Wide SO MAX243ESE -40C to +85C 16 Narrow SO MAX239C/D 0C to +70C Dice* MAX243EWE -40C to +85C 16 Wide SO MAX239ENG -40C to +85C 24 Narrow Plastic DIP MAX243EJE -40C to +85C 16 CERDIP MAX239EWG -40C to +85C 24 Wide SO MAX243MJE -55C to +125C 16 CERDIP MAX239ERG -40C to +85C 24 Narrow CERDIP MAX244CQH 0C to +70C 44 PLCC MAX239MRG -55C to +125C 24 Narrow CERDIP MAX244C/D 0C to +70C Dice* MAX240CMH 0C to +70C 44 Plastic FP MAX244EQH -40C to +85C MAX240C/D 0C to +70C Dice* MAX245CPL 0C to +70C 40 Plastic DIP MAX241CAI 0C to +70C 28 SSOP MAX245C/D 0C to +70C Dice* MAX241CWI 0C to +70C 28 Wide SO MAX245EPL -40C to +85C 40 Plastic DIP MAX241C/D 0C to +70C Dice* MAX246CPL 0C to +70C 40 Plastic DIP MAX241EAI -40C to +85C 28 SSOP MAX246C/D 0C to +70C Dice* MAX241EWI -40C to +85C 28 Wide SO MAX246EPL -40C to +85C 40 Plastic DIP 0C to +70C 40 Plastic DIP Dice* 44 PLCC MAX242CAP 0C to +70C 20 SSOP MAX247CPL MAX242CPN 0C to +70C 18 Plastic DIP MAX247C/D 0C to +70C MAX242CWN 0C to +70C 18 Wide SO MAX247EPL -40C to +85C MAX242C/D 0C to +70C Dice* MAX248CQH 0C to +70C 44 PLCC MAX242EPN -40C to +85C 18 Plastic DIP MAX248C/D 0C to +70C Dice* MAX242EWN -40C to +85C 18 Wide SO MAX248EQH MAX242EJN -40C to +85C 18 CERDIP MAX242MJN -55C to +125C 18 CERDIP 40 Plastic DIP -40C to +85C 44 PLCC MAX249CQH 0C to +70C 44 PLCC MAX249EQH -40C to +85C 44 PLCC * Contact factory for dice specifications. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 36 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 (c) 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.