This is information on a product in full production.
October 2014 DocID15818 Rev 12 1/179
STM32F205xx
STM32F207xx
ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M3 CPU (120 MHz
max) with Adaptive real-time accelerator (ART
Accelerator™ allowing 0-wait state execution
performance from Flash memory, MPU,
150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)
Memories
Up to 1 Mbyte of Flash memory
512 bytes of OTP memory
Up to 128 + 4 Kbytes of SRAM
Flexible static memory controller that
supports Compact Flash, SRAM, PSRAM,
NOR and NAND memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
From 1.8 to 3.6 V application supply+I/Os
POR, PDR, PVD and BOR
4 to 26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low-power modes
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20 × 32 bit backup
registers, and optional 4 KB backup SRAM
3 × 12-bit, 0.5 µs ADCs with up to 24 channels
and up to 6 MSPS in triple interleaved mode
2 × 12-bit D/A converters
General-purpose DMA: 16-stream controller
with centralized FIFOs and burst support
Up to 17 timers
Up to twelve 16-bit and two 32-bit timers,
up to 120 MHz, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
Debug mode: Serial wire debug (SWD), JTAG,
and Cortex-M3 Embedded Trace Macrocell™
Up to 140 I/O ports with interrupt capability:
Up to 136 fast I/Os up to 60 MHz
Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
Up to 3 × I2C interfaces (SMBus/PMBus)
Up to 4 USARTs and 2 UARTs (7.5 Mbit/s,
ISO 7816 interface, LIN, IrDA, modem ctrl)
Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S
to achieve audio class accuracy via audio
PLL or external PLL
2 × CAN interfaces (2.0B Active)
SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface
(48 Mbyte/s max.)
CRC calculation unit
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F205xx
STM32F205RB, STM32F205RC, STM32F205RE,
STM32F205RF, STM32F205RG, STM32F205VB,
STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG,
STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG
STM32F207xx
STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG,
STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG,
STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
LQFP176 (24 × 24 mm)
UFBGA176
(10 × 10 mm)
WLCSP64+2
(0.400 mm pitch)
&"'!
www.st.com
Contents STM32F20xxx
2/179 DocID15818 Rev 12
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . . 19
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 29
3.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 29
3.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.20.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID15818 Rev 12 3/179
STM32F20xxx Contents
5
3.20.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.21 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.22 Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.25 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 35
3.27 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.28 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 36
3.29 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 36
3.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.32 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.33 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.34 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.35 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Contents STM32F20xxx
4/179 DocID15818 Rev 12
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 74
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 74
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 75
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 96
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 101
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 149
6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 149
6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1.1 LQFP64, 10 x 10 mm 64 pin low-profile quad flat package . . . . . . . . . 151
7.1.2 WLCSP64+2 - 0.400 mm pitch wafer level chip size package . . . . . . 153
7.1.3 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package . . . . . . . 154
DocID15818 Rev 12 5/179
STM32F20xxx Contents
5
7.1.4 LQFP144, 20 x 20 mm 144-pin low-profile quad flat package . . . . . . . 157
7.1.5 LQFP176, 24 × 24 176-pin low profile quad flat package . . . . . . . . . . 160
7.1.6 UFBGA176+25 10 × 10 mm ultra thin fine pitch ball grid array . . . . . . 163
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
List of tables STM32F20xxx
6/179 DocID15818 Rev 12
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F205xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 8. STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 10. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 72
Table 16. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 74
Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 74
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 77
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 84
Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 84
Table 26. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 28. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 29. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 30. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 32. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 33. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 34. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 35. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 36. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 37. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 38. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 39. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DocID15818 Rev 12 7/179
STM32F20xxx List of tables
7
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 50. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 51. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 52. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 55. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 56. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 57. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 58. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 59. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 60. Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 61. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 62. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 63. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 64. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 65. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 67. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 68. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 70. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 71. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 131
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 132
Table 74. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 75. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 76. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 77. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 78. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 79. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 80. Switching characteristics for PC Card/CF read and write cycles in
attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 146
Table 82. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 83. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 84. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 85. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 86. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 151
Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 89. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 155
Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. . . . . . . . 157
Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 92. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 163
Table 93. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 94. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 95. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
List of figures STM32F20xxx
8/179 DocID15818 Rev 12
List of figures
Figure 1. Compatible board design between STM32F10xx and STM32F2xx
for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Compatible board design between STM32F10xx and STM32F2xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. Compatible board design between STM32F10xx and STM32F2xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. STM32F20x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. Regulator OFF/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Startup in regulator OFF: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 11. STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 12. STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 13. STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 14. STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 15. STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 16. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 17. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 18. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 19. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 20. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 21. Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 22. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 25. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . . 80
Figure 26. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 80
Figure 27. Typical current consumption vs temperature in Sleep mode,
peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 28. Typical current consumption vs temperature in Sleep mode,
peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 29. Typical current consumption vs temperature in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 31. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 34. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 35. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 36. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 37. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
DocID15818 Rev 12 9/179
STM32F20xxx List of figures
10
Figure 38. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 39. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 40. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 41. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 42. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 43. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 44. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 45. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 46. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 47. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 119
Figure 48. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 49. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 50. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 51. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 52. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 53. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 54. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 126
Figure 55. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 126
Figure 56. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 131
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 132
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 61. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 62. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 64. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 65. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 141
Figure 66. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 142
Figure 67. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 68. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 69. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 144
Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 145
Figure 71. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 72. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 73. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 148
Figure 74. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 148
Figure 75. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 76. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 151
Figure 78. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 79. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 153
Figure 80. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 154
Figure 81. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 82. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 83. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 84. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 85. LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 86. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 160
List of figures STM32F20xxx
10/179 DocID15818 Rev 12
Figure 87. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 88. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
DocID15818 Rev 12 11/179
STM32F20xxx Introduction
178
1 Introduction
This datasheet provides the description of the STM32F205xx and STM32F207xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the
STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices
throughout the document.
For information on programming, erasing and protection of the internal Flash memory,
please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference
Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Description STM32F20xxx
12/179 DocID15818 Rev 12
2 Description
The STM32F20x family is based on the high-performance ARM® Cortex®-M3 32-bit RISC
core operating at a frequency of up to 120 MHz. The family incorporates high-speed
embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up
to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
The devices also feature an adaptive real-time memory accelerator (ART Accelerator™)
which allows to achieve a performance equivalent to 0 wait state program execution from
Flash memory at a CPU frequency up to 120 MHz. This performance has been validated
using the CoreMark benchmark.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true number random generator (RNG). They also feature standard and advanced
communication interfaces. New advanced peripherals include an SDIO, an enhanced
flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins
and more), and a camera interface for CMOS sensors. The devices also feature standard
peripherals.
Up to three I2Cs
Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external PLL to allow
synchronization.
4 USARTs and 2 UARTs
A USB OTG high-speed with full-speed capability (with the ULPI)
A second USB OTG (full-speed)
Two CANs
An SDIO interface
Ethernet and camera interface available on STM32F207xx devices only.
Note: The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature
range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF
is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to
70 °C temperature range using an external power supply supervisor (see Section 3.16).
A comprehensive set of power-saving modes allow the design of low-power applications.
STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64
pins to 176 pins. The set of included peripherals changes with the device chosen.These
features make the STM32F205xx and STM32F207xx microcontroller family suitable for a
wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Figure 4 shows the general block diagram of the device family.
STM32F20xxx Description
DocID15818 Rev 12 13/179
Table 2. STM32F205xx features and peripheral counts
Peripherals STM32F205Rx STM32F205Vx STM32F205Zx
Flash memory in Kbytes 128 256 512 768 1024 128 256 512 768 1024 256 512 768 1024
SRAM in Kbytes
System
(SRAM1+SRAM2)
64
(48+16)
96
(80+16)
128
(112+16)
64
(48+16)
96
(80+16)
128
(112+16)
96
(80+16)
128
(112+16)
Backup 4 4 4
FSMC memory controller No Yes(1)
Ethernet No
Timers
General-purpose 10
Advanced-control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number generator Yes
Comm.
interfaces
SPI/(I2S) 3/(2)(2)
I2C 3
USART
UART
4
2
USB OTG FS Yes
USB OTG HS Yes
CAN 2
Camera interface No
GPIOs 51 82 114
SDIO Yes
12-bit ADC
Number of channels
3
16 16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 120 MHz
Operating voltage 1.8 V to 3.6 V(3)
Description STM32F20xxx
14/179 DocID15818 Rev 12
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64
LQFP64
WLCSP64
+2
LQFP6
4
LQFP64
WLCSP6
4+2
LQFP100 LQFP144
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
Table 3. STM32F207xx features and peripheral counts
Peripherals STM32F207Vx STM32F207Zx STM32F207Ix
Flash memory in Kbytes 256 512 768 1024 256 512 768 1024 256 512 768 1024
SRAM in Kbytes
System
(SRAM1+SRAM2)
128
(112+16)
Backup 4
FSMC memory controller Yes(1)
Ethernet Yes
Timers
General-purpose 10
Advanced-control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number generator Yes
Table 2. STM32F205xx features and peripheral counts (continued)
Peripherals STM32F205Rx STM32F205Vx STM32F205Zx
STM32F20xxx Description
DocID15818 Rev 12 15/179
Comm. interfaces
SPI/(I2S) 3/(2)(2)
I2C 3
USART
UART
4
2
USB OTG FS Yes
USB OTG HS Yes
CAN 2
Camera interface Yes
GPIOs 82 114 140
SDIO Yes
12-bit ADC
Number of channels
3
16 24 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 120 MHz
Operating voltage 1.8 V to 3.6 V(3)
Operating temperatures
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP100 LQFP144 LQFP176/
UFBGA176
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
Table 3. STM32F207xx features and peripheral counts (continued)
Peripherals STM32F207Vx STM32F207Zx STM32F207Ix
Description STM32F20xxx
16/179 DocID15818 Rev 12
2.1 Full compatibility throughout the family
The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members
are fully pin-to-pin, software and feature compatible, allowing the user to try different
memory densities and peripherals for a greater degree of freedom during the development
cycle.
The STM32F205xx and STM32F207xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F205xx and STM32F207xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x
family remains simple as only a few pins are impacted.
Figure 3 and Figure 1 provide compatible board designs between the STM32F20x and the
STM32F10xxx family.
Figure 1. Compatible board design between STM32F10xx and STM32F2xx
for LQFP64 package






 
633
633
633
633
½RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AIB
DocID15818 Rev 12 17/179
STM32F20xxx Description
178
Figure 2. Compatible board design between STM32F10xx and STM32F2xx
for LQFP100 package
Figure 3. Compatible board design between STM32F10xx and STM32F2xx
for LQFP144 package
1. RFU = reserved for future use.
AIC







 

633
633
6$$
633
633
633
:RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
2&5
633
6$$
633FOR34-&XX
6$$FOR34-&XX
4WO :RESISTORSCONNECTEDTO
633FORTHE34-&XX
6$$633OR.#FORTHE34-&XX
AIC








633
:RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION

633

4WO :RESISTORSCONNECTEDTO
633
6$$
633
633
2&5
633
6$$
633FORTHE34-&XX
6$$633OR.#FORTHE34-&XX
Description STM32F20xxx
18/179 DocID15818 Rev 12
Figure 4. STM32F20x block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 60 MHz.
2. The camera interface and Ethernet are available only in STM32F207xx devices.
'0)/0/24!
!("!0"
%84)47+50
!&
0!;=
'0)/0/24"
0";=
4)-07-
COMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
4)-07-
'0)/0/24#
0#;=
53!24
2848#+
#43243AS!&
'0)/0/24$
0$;=
'0)/0/24%
0%;=
'0)/0/24&
0&;=
'0)/0/24'
0';=
30)
-/3)-)3/
3#+.33AS!&
!0"-(Z
!0"-(Z
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
6
$$2%&?!$#
ANALOGINPUTSTO!$#
CHANNELS%42AS!&
CHANNELS%42AS!&
CHANNELS%42AS!&
CHANNELS
2848#+
53!24
2848#+
53!24
2848AS!&
5!2 4
2848AS!&
5!2 4
-/3)$/54 -)3/$).3#+#+
30))3
.3373-#+AS!&
-/3)$/54 -)3/$).3#+#+
30))3
.3373-#+AS!&
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
)#3-"53
4828
BX#!.
4828
BX#!.
$!#?/54
AS!&
$!#?/54
AS!&
)4&
77$'
+""+302!-
24#?!&
/3#?).
/3#?).
/3#?/54
/3#?/54
.234
6
$$!
6
33!
6
#!0
6
#!0
53!24
2848#+
#43243AS!&
SMCARD
IR$!
SMCARD
IR$!
SMCARD
IR$!
SMCARD
IR$!
B
B
B
B
B
B
B
B
#43243AS!&
#43243AS!&
3$)/--#
$;=
#-$#+AS!&
6
"!4
TO6
$-!
!("!0"
$-!
3#,3$!3-"!AS!&
)#3-"53
'0)/0/24(
0(;=
'0)/0/24)
0);=
*4!'37
$"53
3"53
)"53
.6)#
%4-
-05
.*4234*4$)
*4$/37$
*4$/42!#%37/
42!#%#,+
42!#%$;=
*4#+37#,+
%THERNET-!#
$-!
-))OR2-))AS!&
-$)/AS!&
&)&/

53"
$-!
&)&/
/4'(3
$0$-
5,0)#+$$)2340.84
$-!
3TREAMS
&)&/
$-!
3TREAMS
&)&/
!##%,
#!#(%
32!-+"
32!-+"
#,+.%;=!;=
$;=/%.7%.
.",;=.,.2%'
.7!)4)/2$9#$
.)/2$)/72).4;=
).4..))3AS!&
3#,3$!).4.)$6"533/&
#AMERA
INTERFACE
(39.#639.#
0)8#,+$;=
53"
0(9
/4'&3
$0
$-
&)&/ &)&/
!("-(Z
0(9
&)&/
53!24-"PS
4EMPERATURESENSOR
!$#
!$#
!$#
)&
)&
6$$!
6$$!
0/20$2
3UPPLY
6$$!
SUPERVISION
06$
2ESET
)NT
0/2
84!,/3#
 -(Z
84!,K(Z
(#,+X
-!.!'4
24#
2#(3
&#,+
2#,3
072
)7$'
6"!4
6$$!
6$$
!75
2ESET
CLOCK
CONTROL
0,,
0#,+X
INTERFACE
6$$
TO6
6
33
6OLTAGE
REGULATOR
6TO6
6
$$
0OWERMANAGMT
6$$
24#?!&
"ACKUPREGISTER
3#,3$!).4.)$6"533/&
!("BUSMATRIX3-
!0"-(Z
!("-(Z
,3,3
CHANNELSAS!&
CHANNEL AS!&
CHANNEL AS!&
4)-
B
B
B
4)-
CHANNELSAS!&
4)-
CHANNELAS!&
B
B
4)-
CHANNELAS!& B
"/2
$!#
$!#
&LASH
-BYTE
32!-032!-./2&LASH
0##ARD!4!.!.$&LASH
%XTERNALMEMORY
CONTROLLER&3-#
4)-
4)-
4)-
4)-
4)-
4)-
4)-
4)-
AIC
COMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
&)&/
2.'
!2-#ORTEX-
-(Z
!24ACCELERATOR
!0"-(Z
!("
DocID15818 Rev 12 19/179
STM32F20xxx Functional overview
178
3 Functional overview
3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM
The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering
the high-performance expected from an ARM core in the memory size usually associated
with 8- and 16-bit devices.
With its embedded ARM core, the STM32F20x family is compatible with all ARM tools and
software.
Figure 4 shows the general block diagram of the STM32F20x family.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex®-M3 processors. It balances the inherent performance advantage of
the ARM Cortex-M3 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher operating frequencies.
To release the processor full 150 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 120 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32F20xxx
20/179 DocID15818 Rev 12
3.4 Embedded Flash memory
The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,
512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.
The devices also feature 512 bytes of OTP memory that can be used to store critical user
data such as Ethernet MAC addresses or cryptographic keys.
3.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6 Embedded SRAM
All STM32F20x products embed:
Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0
wait states
4 Kbytes of backup SRAM.
The content of this area is protected against possible unwanted write accesses, and is
retained in Standby or VBAT mode.
3.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DocID15818 Rev 12 21/179
STM32F20xxx Functional overview
178
Figure 5. Multi-AHB matrix
3.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB
peripherals, support burst transfer and are designed to provide the maximum peripheral
bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
!2-
#ORTEX-
'0
$-!
'0
$-!
-!#
%THERNET
53"/4'
(3
"USMATRIX3
3 3 3 3 3 3 3 3
)#/$%
$#/$%
!24
!##%,
&LASH
MEMORY
32!-
+BYTE
32!-
+BYTE
!("
PERIPH
!("
PERIPH
&3-#
3TATIC-EM#TL
-
-
-
-
-
-
-
)BUS
$BUS
3BUS
$-!?0
$-!?-%-
$-!?-%-
$-!?0
%4(%2.%4?-
53"?(3?-
AIC
!0"
!0"
Functional overview STM32F20xxx
22/179 DocID15818 Rev 12
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART and UART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC.
3.9 Flexible static memory controller (FSMC)
The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs
supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and
NAND Flash.
Functionality overview:
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
Maximum frequency (fHCLK) for external access is 60 MHz
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10 Nested vectored interrupt controller (NVIC)
The STM32F20x devices embed a nested vectored interrupt controller able to manage 16
priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of
the Cortex®-M3.
The NVIC main features are the following:
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
DocID15818 Rev 12 23/179
STM32F20xxx Functional overview
178
3.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
3.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly,
full interrupt management of the PLL clock entry is available when necessary (for example if
an indirectly used external oscillator fails).
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the
system clock.
Several prescalers and PLLs allow the configuration of the three AHB buses, the high-
speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of
the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains
is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.
The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
3.14 Power supply schemes
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins. On devices in WLCSP64+2 package, if
IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates
Functional overview STM32F20xxx
24/179 DocID15818 Rev 12
in the 0 to 70 °C temperature range using an external power supply supervisor (see
Section 3.16).
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 19: Power supply scheme for more details.
3.15 Power supply supervisor
The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry.
At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V.
After the 1.8 V POR threshold level is reached, the option byte loading process starts, either
to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three
BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit. On devices in WLCSP64+2 package,
the BOR, POR and PDR features can be disabled by setting IRROFF pin to VDD. In this
mode an external power supply supervisor is required (see Section 3.16).
The devices also feature an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.16 Voltage regulator
The regulator has five operating modes:
Regulator ON
Main regulator mode (MR)
Low-power regulator (LPR)
Power-down
Regulator OFF
Regulator OFF/internal reset ON
Regulator OFF/internal reset OFF
3.16.1 Regulator ON
The regulator ON modes are activated by default on LQFP packages.On WLCSP64+2
package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while
only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available).
VDD minimum value is 1.8 V.
DocID15818 Rev 12 25/179
STM32F20xxx Functional overview
178
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode
LPR is used in Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost).
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. Refer to
Figure 19: Power supply scheme and Table 16: VCAP1/VCAP2 operating conditions.
All packages have the regulator ON feature.
3.16.2 Regulator OFF
This feature is available only on packages featuring the REGOFF pin. The regulator is
disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a
V12 voltage source through VCAP_1 and VCAP_2 pins.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 19: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic
power domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a
consequence, PA0 and NRST pins must be managed separately if the debug
connection at reset or pre-reset is required.
Regulator OFF/internal reset ON
On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to VDD and
IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD
(IRROFF not available). In this mode, VDD/VDDA minimum value is 1.8 V.
The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
Functional overview STM32F20xxx
26/179 DocID15818 Rev 12
Figure 6. Regulator OFF/internal reset ON
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and
VCAP_2 reach 1.08 V and until VDD reaches 1.8 V (see Figure 8).
Otherwise, If the time for VCAP_1 and VCAP_2 to reach 1.08 V is slower than the time for
VDD to reach 1.8 V, then PA0 should be asserted low externally (see Figure 9).
If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.8 V, then a reset must
be asserted on PA0 pin.
Regulator OFF/internal reset OFF
On WLCSP64+2 package, this mode activated by connecting REGOFF to VSS and IRROFF
to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode is available
only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source
through VCAP_1 and VCAP_2 pins. In this mode, the integrated power-on reset (POR)/ power-
down reset (PDR) circuitry is disabled.
An external power supply supervisor should monitor both the external 1.2 V and the external
VDD supply voltage, and should maintain the device in reset mode as long as they remain
below a specified threshold. The VDD specified threshold, below which the device must be
maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes
allows to design low-power applications.
DocID15818 Rev 12 27/179
STM32F20xxx Functional overview
178
Figure 7. Regulator OFF/internal reset OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains (see Figure 8).
PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V,
and until VDD reaches 1.7 V.
NRST should be controlled by an external reset controller to keep the device under
reset when VDD is below 1.7 V (see Figure 9).
In this mode, when the internal reset is OFF, the following integrated features are no more
supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry is disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
2%'/&&
6#!0?
AIB
6#!0?
.234
6
)22/&&
6$$
6
6$$
%XTERNAL6$$6#!0?
POWERSUPPLYSUPERVISOR
%XTRESETCONTROLLERACTIVE
WHEN6$$6AND
6#!0?6
0!
Functional overview STM32F20xxx
28/179 DocID15818 Rev 12
Figure 8. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (ON or OFF).
Figure 9. Startup in regulator OFF: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
6$$
TIME
6
0$26
6
#!0?6#!0?
6
TIME
0!TIEDTO.234
.234
6$$
TIME
6
0$26
6
#!0?6#!0?
6
TIME
0!ASSERTEDEXTERNALLY
.234
DocID15818 Rev 12 29/179
STM32F20xxx Functional overview
178
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability
3.17 Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F20x devices includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Its main features are the
following:
Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
Programmable alarm and programmable periodic interrupts with wakeup from Stop and
Standby modes.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-
power RC oscillator or the high-speed external clock divided by 128. The internal low-
speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an
external 512 Hz output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar
fields can be independently masked for alarm comparison. To generate a periodic
interrupt, a 16-bit programmable binary auto-reload downcounter with programmable
resolution is available and allows automatic wakeup and periodic alarms from every
120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate
a time base of 1 second from a clock at 32.768 kHz.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which
need to be retained in VBAT and standby mode.This memory area is disabled to minimize
power consumption (see Section 3.18: Low-power modes). It can be enabled by software.
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON/internal
reset ON
Regulator
OFF/internal reset ON
Regulator OFF/internal
reset OFF
LQFP64
LQFP100
LQFP144
LQFP176
Yes No No
WLCSP 64+2
Yes
REGOFF and IRROFF
set to VSS
Yes
REGOFF set to VDD
and IRROFF set to VSS
Yes
REGOFF set to VSS and
IRROFF set to VDD
UFBGA176 Yes
REGOFF set to VSS
Yes
REGOFF set to VDD No
Functional overview STM32F20xxx
30/179 DocID15818 Rev 12
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.18: Low-power
modes).
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or the VBAT pin.
3.18 Low-power modes
The STM32F20x family supports three low-power modes to achieve the best compromise
between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device
enters the Stop or Standby mode.
3.19 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery or an
external supercapacitor.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When using WLCSP64+2 package, if IRROFF pin is connected to VDD, the VBAT
functionality is no more available and VBAT pin should be connected to VDD.
DocID15818 Rev 12 31/179
STM32F20xxx Functional overview
178
3.20 Timers and watchdogs
The STM32F20x devices include two advanced-control timers, eight general-purpose
timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control, general-purpose and basic timers.
3.20.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
Max
timer
clock
Advanced-
control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 Yes 60 MHz 120
MHz
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 30 MHz 60
MHz
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 30 MHz 60
MHz
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 30 MHz 60
MHz
General
purpose
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 60 MHz 120
MHz
TIM10,
TIM11 16-bit Up
Any integer
between 1
and 65536
No 1 No 60 MHz 120
MHz
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 30 MHz 60
MHz
TIM13,
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No 30 MHz 60
MHz
Functional overview STM32F20xxx
32/179 DocID15818 Rev 12
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control
timer features are shared with those of the standard TIMx timers which have the same
architecture. The advanced-control timer can therefore work together with the TIMx timers
via the Timer Link feature for synchronization or event chaining.
3.20.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F20x devices
(see Table 5 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit
timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-
bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based
on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4
independent channels for input capture/output compare, PWM or one-pulse mode output.
This gives up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other
general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link
feature for synchronization or event chaining.
The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these
general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable
of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-
effect sensors.
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and
TIM11 feature one independent channel, whereas TIM9 has two independent channels for
input capture/output compare, PWM or one-pulse mode output. They can be synchronized
with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be
used as simple time bases.
TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and
TIM14 feature one independent channel, whereas TIM12 has two independent channels for
input capture/output compare, PWM or one-pulse mode output. They can be synchronized
with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.
They can also be used as simple time bases.
3.20.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
DocID15818 Rev 12 33/179
STM32F20xxx Functional overview
178
3.20.4 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
The counter can be frozen in debug mode.
3.20.5 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
3.21 Inter-integrated circuit interface (I²C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the
7-bit dual addressing mode (as slave). A hardware CRC generation/verification is
embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
3.22 Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs)
The STM32F20x devices embed four universal synchronous/asynchronous receiver
transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous
receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at
up to 3.75 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Functional overview STM32F20xxx
34/179 DocID15818 Rev 12
3.23 Serial peripheral interface (SPI)
The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex
and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2
and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.24 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, in half-duplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as input or output channels. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx interfaces can be served by the DMA controller.
3.25 SDIO
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
Table 6. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud rate
in Mbit/s
(oversampling
by 16)
Max. baud rate
in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 1.87 7.5 APB2 (max.
60 MHz)
USART2 X X X X X X 1.87 3.75 APB1 (max.
30 MHz)
USART3 X X X X X X 1.87 3.75 APB1 (max.
30 MHz)
UART4 X - X - X - 1.87 3.75 APB1 (max.
30 MHz)
UART5 X - X - X - 3.75 3.75 APB1 (max.
30 MHz)
USART6 X X X X X X 3.75 7.5 APB2 (max.
60 MHz)
DocID15818 Rev 12 35/179
STM32F20xxx Functional overview
178
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the
SD Memory Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
Peripheral available only on the STM32F207xx devices.
The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard medium-
independent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F207xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) or 50 MHz (RMII) output from the STM32F207xx.
The STM32F207xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F20x and STM32F21x reference manual for
details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
3.27 Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
Functional overview STM32F20xxx
36/179 DocID15818 Rev 12
CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared
with any other peripheral.
3.28 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Internal FS OTG PHY support
3.29 Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F20x devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG
peripheral. The USB OTG HS supports both full-speed and high-speed operations. It
integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin
interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS
mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
DocID15818 Rev 12 37/179
STM32F20xxx Functional overview
178
3.30 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 kHz to 192 kHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
3.31 Digital camera interface (DCMI)
The camera interface is not available in STM32F205xx devices.
STM32F207xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It
features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
3.32 True random number generator (RNG)
All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers
produced by an integrated analog circuit.
3.33 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O alternate function configuration can be locked if needed by following a specific
sequence in order to avoid spurious writing to the I/Os registers.
To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to
120 MHz that leads to a maximum I/O toggling speed of 60 MHz.
Functional overview STM32F20xxx
38/179 DocID15818 Rev 12
3.34 ADCs (analog-to-digital converters)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be
internally connected to the ADC start trigger and injection trigger, respectively, to allow the
application to synchronize A/D conversion and timers.
3.35 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.36 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected
to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a
digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
DocID15818 Rev 12 39/179
STM32F20xxx Functional overview
178
3.37 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.38 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F20x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F20xxx
40/179 DocID15818 Rev 12
4 Pinouts and pin description
Figure 10. STM32F20x LQFP64 pinout
1. The above figure shows the package top view.
Figure 11. STM32F20x WLCSP64+2 ballout
1. The above figure shows the package top view.
              
















             











6"!4
0#/3#?).
0#/3#?/54
.234
0#
0#
0#
0#
633!
6$$!
0! 7 + 5 0
0!
0!
6$$ 
633 
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0#
0#
0#
0!
0!
6$$ 
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0"
0"
0"
0"
0!
0!
0!
0!
0!
0#
0#
0"
0"
0"
0"
0"
6#!0?
6$$
,1&0
AIC
0#24#?!&
0(/3#?).
0(/3#?/54
6$$
633

!0! 0! 0# 0" 0" 0" 0" 6$$
"0! 0# 0" 0" "//4 0" 0#
#0! 6#!0? 0# 0$ )22/&&
$0# 0! 0! 0#
%0! 0!
&0# 0#
'0" 0# 0# 0! 0#
(0" 0" 0" 0#
*0" 0"
6#!0? 0" 0" 0! 0!
AIC

6"!4
633 0#
0#
633 6$$
6$$ 0! .234 0(
/3#?).
633 62%& 0# 0(
/3#?/54
0#
0! 0! 2%'/&& 0! 633?
0" 0!
DocID15818 Rev 12 41/179
STM32F20xxx Pinouts and pin description
178
Figure 12. STM32F20x LQFP100 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0! 7 + 5 0
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0! 
0! 
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
2&5
6$$
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























AIE
,1&0
0#24#?!&
0(/3#?/54
Pinouts and pin description STM32F20xxx
42/179 DocID15818 Rev 12
Figure 13. STM32F20x LQFP144 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
2&5
6$$
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6
$$
6
33
0'
0'
0'
0'
0'
0'
0$
0$
6
$$
6
33
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
0% 6
$$
0% 6
33
0%
0% 0!
0% 0!
6"!4 0!
0#24#?!& 0!
0#/3#?). 0!
0#/3#?/54 0!
0& 0#
0& 0#
0& 0#
0& 0#
0& 6
$$
0& 6
33
6
33
0'
6
$$
0'
0& 0'
0& 0'
0& 0'
0& 0'
0& 0'
0(/3#?). 0$
0(/3#?/54 0$
.234 6
$$
0# 6
33
0# 0$
0# 0$
0# 0$
6
33!
0$
6
$$
0$
6
2%&
0$
6
$$!
0"
0! 7 + 5 0 0"
0! 0"
0! 0"
0!
6
33
6
$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633
6
$$
0&
0&
0&
0'
0'
0%
0%
0%
6
33
6
$$
0%
0%
0%
0%
0%
0%
0"
0"
6
#!0?
6
$$



























































































,1&0












































AIE
6
#!0?
DocID15818 Rev 12 43/179
STM32F20xxx Pinouts and pin description
178
Figure 14. STM32F20x LQFP176 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
0$2?/.
6$$
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0)
0)
0%
6$$
0%
633
0%
0%
0!
0%
0!
6"!4
0!
0)24#?!&
0!
0#/3#?).
0!
0#/3#?/54
0!
0&
0#
0&
0#
0&
0#
0&
0#
0&
6$$
0&
633
633
0'
6$$
0'
0&
0'
0&
0'
0&
0'
0&
0'
0&
0'
0(/3#?).
0$
0(/3#?/54
0$
.234
6$$
0#
633
0#
0$
0#
0$
0#
0$
633!
0$
6$$ 0$
62%&
0$
6$$!
0"
0!7+50
0"
0!
0"
0!
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$



























































































,1&0












































AIE
6#!0?
0)
0!
0!
6$$
633
0)
0)
0)








0(
0(
0(
0(
0(
0(
0(
0(








0)
0)
0(
0(
0(
6$$
633
0(
















0#24#?!&
0)
0)
0)
633
6$$
0(
0(
Pinouts and pin description STM32F20xxx
44/179 DocID15818 Rev 12
Figure 15. STM32F20x UFBGA176 ballout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
     
$ 3( 3( 3( 3( 3% 3% 3* 3* 3% 3% 3' 3& 3$ 3$ 3$
% 3( 3( 3( 3% 3% 3% 3*3*3*3* 3' 3' 3&3&3$
&9%$73,3,3, 5)8
9'' 9'' 9'' 9'' 3* 3' 3' 3, 3, 3$
'3&
7$03
3,
7$03 3, 3, %227 966 966 966 3' 3' 3' 3+ 3, 3$
(3&
26&B,1 3) 3, 3, 3+ 3+ 3, 3$
)3&
26&B287
966 9'' 3+ 966 966 966 966 966 966 9&$3B 3& 3$
*3+
26&B,1 966 9'' 3+ 966 966 966 966 966 966 9'' 3& 3&
+3+
26&B287 3) 3) 3+ 966 966 966 966 966 966 9'' 3* 3&
- 15673)3)3+ 966966966966966 9'' 9'' 3*3*
. 3) 3) 3) 9'' 966 966 966 966 966 3+ 3* 3* 3*
/ 3) 3) 3) 5(*2)) 3+ 3+ 3' 3*
0 966$ 3& 3& 3& 3& 3% 3* 966 966 9&$3B 3+ 3+ 3+ 3' 3'
195()3$
3$
:.83 3$ 3& 3) 3* 9'' 9'' 9'' 3( 3+ 3' 3' 3'
3 95() 3$ 3$ 3$ 3& 3) 3) 3( 3( 3( 3( 3% 3% 3' 3'
5 9''$ 3$ 3$ 3% 3% 3) 3) 3( 3( 3( 3( 3% 3% 3% 3%
AIC
966

Table 7. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DocID15818 Rev 12 45/179
STM32F20xxx Pinouts and pin description
178
Table 8. STM32F20x pin and ball definitions
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
- - 1 1 1 A2 PE2 I/O FT - TRACECLK, FSMC_A23,
ETH_MII_TXD3, EVENTOUT -
- - 2 2 2 A1 PE3 I/O FT - TRACED0,FSMC_A19,
EVENTOUT -
- - 3 3 3 B1 PE4 I/O FT - TRACED1,FSMC_A20,
DCMI_D4, EVENTOUT -
- - 4 4 4 B2 PE5 I/O FT -
TRACED2, FSMC_A21,
TIM9_CH1, DCMI_D6,
EVENTOUT
-
- - 5 5 5 B3 PE6 I/O FT -
TRACED3, FSMC_A22,
TIM9_CH2, DCMI_D7,
EVENTOUT
-
1A96 6 6 C1 V
BAT S- - -
----7D2 PI8 I/OFT
(2)(3) EVENTOUT RTC_AF2
2B87 7 8 D1 PC13 I/OFT
(2)(3) EVENTOUT RTC_AF1
3B98 8 9 E1 PC14/OSC32_IN
(PC14) I/O FT (2)(3) EVENTOUT OSC32_IN(4)
4C99 910F1PC15-OSC32_OUT
(PC15) I/O FT (2)(3) EVENTOUT OSC32_OUT(4)
- - - - 11 D3 PI9 I/O FT - CAN1_RX,EVENTOUT -
- - - - 12 E3 PI10 I/O FT - ETH_MII_RX_ER,
EVENTOUT -
- - - - 13 E4 PI11 I/O FT - OTG_HS_ULPI_DIR,
EVENTOUT -
----14F2 V
SS S- -
----15F3 V
DD S- -
---1016E2 PF0 I/OFT- FSMC_A0, I2C2_SDA,
EVENTOUT -
---1117H3 PF1 I/OFT- FSMC_A1, I2C2_SCL,
EVENTOUT -
---1218H2 PF2 I/OFT- FSMC_A2, I2C2_SMBA,
EVENTOUT -
---1319J2 PF3 I/OFT
(4) FSMC_A3, EVENTOUT ADC3_IN9
Pinouts and pin description STM32F20xxx
46/179 DocID15818 Rev 12
---1420J3 PF4 I/OFT
(4) FSMC_A4, EVENTOUT ADC3_IN14
---1521K3 PF5 I/OFT
(4) FSMC_A5, EVENTOUT ADC3_IN15
-H9101622G2 V
SS S- - - -
--111723G3 V
DD S- - - -
---1824K2 PF6 I/OFT
(4) TIM10_CH1, FSMC_NIORD,
EVENTOUT ADC3_IN4
---1925K1 PF7 I/OFT
(4) TIM11_CH1,FSMC_NREG,
EVENTOUT ADC3_IN5
---2026L3 PF8 I/OFT
(4) TIM13_CH1,
FSMC_NIOWR, EVENTOUT ADC3_IN6
---2127L2 PF9 I/OFT
(4) TIM14_CH1, FSMC_CD,
EVENTOUT ADC3_IN7
---2228L1 PF10 I/OFT
(4) FSMC_INTR, EVENTOUT ADC3_IN8
5E9122329G1 PH0/OSC_IN
(PH0) I/O FT - EVENTOUT OSC_IN(4)
6F9132430H1 PH1/OSC_OUT
(PH1) I/O FT - EVENTOUT OSC_OUT(4)
7 E8 14 25 31 J1 NRST I/O - - -
8G9152632M2 PC0 I/OFT (4) OTG_HS_ULPI_STP,
EVENTOUT
ADC123_
IN10
9F8162733M3 PC1 I/OFT(4) ETH_MDC, EVENTOUT ADC123_
IN11
10 D7 17 28 34 M4 PC2 I/O FT (4)
SPI2_MISO,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2, EVENTOUT
ADC123_
IN12
11 G8 18 29 35 M5 PC3 I/O FT (4)
SPI2_MOSI, I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
EVENTOUT
ADC123_
IN13
- - 19 30 36 - VDD S- - - -
12 - 20 31 37 M1 VSSA S- - - -
-----N1 V
REF- S- - - -
-F7213238P1 V
REF+ S- - - -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DocID15818 Rev 12 47/179
STM32F20xxx Pinouts and pin description
178
13 - 22 33 39 R1 VDDA S- - - -
14 E7 23 34 40 N3 PA0-WKUP
(PA0) I/O FT (4)(5)
USART2_CTS, UART4_TX,
ETH_MII_CRS,
TIM2_CH1_ETR,
TIM5_CH1, TIM8_ETR,
EVENTOUT
ADC123_IN0,
WKUP
15 H8 24 35 41 N2 PA1 I/O FT (4)
USART2_RTS, UART4_RX,
ETH_RMII_REF_CLK,
ETH_MII_RX_CLK,
TIM5_CH2, TIM2_CH2,
EVENTOUT
ADC123_IN1
16 J9 25 36 42 P2 PA2 I/O FT (4)
USART2_TX,TIM5_CH3,
TIM9_CH1, TIM2_CH3,
ETH_MDIO, EVENTOUT
ADC123_IN2
- - - - 43 F4 PH2 I/O FT - ETH_MII_CRS, EVENTOUT -
- - - - 44 G4 PH3 I/O FT - ETH_MII_COL, EVENTOUT -
----45H4 PH4 I/OFT-
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
-
- - - - 46 J4 PH5 I/O FT - I2C2_SDA, EVENTOUT -
17 G7 26 37 47 R2 PA3 I/O FT (4)
USART2_RX, TIM5_CH4,
TIM9_CH2, TIM2_CH4,
OTG_HS_ULPI_D0,
ETH_MII_COL, EVENTOUT
ADC123_IN3
18 F1 27 38 48 - VSS S- - - -
H7 L4 REGOFF I/O - - - -
19 E1 28 39 49 K4 VDD S- - - -
20 J8 29 40 50 N4 PA4 I/O TTa (4)
SPI1_NSS, SPI3_NSS,
USART2_CK,
DCMI_HSYNC,
OTG_HS_SOF, I2S3_WS,
EVENTOUT
ADC12_IN4,
DAC_OUT1
21 H6 30 41 51 P4 PA5 I/O TTa (4)
SPI1_SCK,
OTG_HS_ULPI_CK,
TIM2_CH1_ETR,
TIM8_CH1N, EVENTOUT
ADC12_IN5,
DAC_OUT2
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
48/179 DocID15818 Rev 12
22 H5 31 42 52 P3 PA6 I/O FT (4)
SPI1_MISO, TIM8_BKIN,
TIM13_CH1, DCMI_PIXCLK,
TIM3_CH1, TIM1_BKIN,
EVENTOUT
ADC12_IN6
23 J7 32 43 53 R3 PA7 I/O FT (4)
SPI1_MOSI, TIM8_CH1N,
TIM14_CH1, TIM3_CH2,
ETH_MII_RX_DV,
TIM1_CH1N,
ETH_RMII_CRS_DV,
EVENTOUT
ADC12_IN7
24 H4 33 44 54 N5 PC4 I/O FT (4)
ETH_RMII_RXD0,
ETH_MII_RXD0,
EVENTOUT
ADC12_IN14
25 G3 34 45 55 P5 PC5 I/O FT (4)
ETH_RMII_RXD1,
ETH_MII_RXD1,
EVENTOUT
ADC12_IN15
26 J6 35 46 56 R5 PB0 I/O FT (4)
TIM3_CH3, TIM8_CH2N,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
TIM1_CH2N, EVENTOUT
ADC12_IN8
27 J5 36 47 57 R4 PB1 I/O FT (4)
TIM3_CH4, TIM8_CH3N,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
TIM1_CH3N, EVENTOUT
ADC12_IN9
28 J4 37 48 58 M6 PB2/BOOT1 (PB2) I/O FT - EVENTOUT -
- - - 49 59 R6 PF11 I/O FT - DCMI_D12, EVENTOUT -
- - - 50 60 P6 PF12 I/O FT - FSMC_A6, EVENTOUT -
---5161M8 V
SS S- -
---5262N8 V
DD S- -
- - - 53 63 N6 PF13 I/O FT - FSMC_A7, EVENTOUT -
- - - 54 64 R7 PF14 I/O FT - FSMC_A8, EVENTOUT -
- - - 55 65 P7 PF15 I/O FT - FSMC_A9, EVENTOUT -
- - - 56 66 N7 PG0 I/O FT - FSMC_A10, EVENTOUT -
- - - 57 67 M7 PG1 I/O FT - FSMC_A11, EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DocID15818 Rev 12 49/179
STM32F20xxx Pinouts and pin description
178
- - 38 58 68 R8 PE7 I/O FT - FSMC_D4,TIM1_ETR,
EVENTOUT -
- - 39 59 69 P8 PE8 I/O FT - FSMC_D5,TIM1_CH1N,
EVENTOUT -
- - 40 60 70 P9 PE9 I/O FT - FSMC_D6,TIM1_CH1,
EVENTOUT -
---6171M9 V
SS S- -
---6272N9 V
DD S- -
- - 41 63 73 R9 PE10 I/O FT - FSMC_D7,TIM1_CH2N,
EVENTOUT -
- - 42 64 74 P10 PE11 I/O FT - FSMC_D8,TIM1_CH2,
EVENTOUT -
- - 43 65 75 R10 PE12 I/O FT - FSMC_D9,TIM1_CH3N,
EVENTOUT -
- - 44 66 76 N11 PE13 I/O FT - FSMC_D10,TIM1_CH3,
EVENTOUT -
- - 45 67 77 P11 PE14 I/O FT - FSMC_D11,TIM1_CH4,
EVENTOUT -
- - 46 68 78 R11 PE15 I/O FT - FSMC_D12,TIM1_BKIN,
EVENTOUT -
29 H3 47 69 79 R12 PB10 I/O FT -
SPI2_SCK, I2S2_SCK,
I2C2_SCL,USART3_TX,OT
G_HS_ULPI_D3,ETH_MII_R
X_ER,TIM2_CH3,
EVENTOUT
-
30 J2 48 70 80 R13 PB11 I/O FT -
I2C2_SDA, USART3_RX,
OTG_HS_ULPI_D4,
ETH_RMII_TX_EN,
ETH_MII_TX_EN,
TIM2_CH4, EVENTOUT
-
31 J3 49 71 81 M10 VCAP_1 S- -
32 - 50 72 82 N10 VDD S- -
----83M11 PH6 I/OFT-
I2C2_SMBA, TIM12_CH1,
ETH_MII_RXD2,
EVENTOUT
-
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
50/179 DocID15818 Rev 12
- - - - 84 N12 PH7 I/O FT - I2C3_SCL, ETH_MII_RXD3,
EVENTOUT -
----85M12 PH8 I/OFT-I2C3_SDA, DCMI_HSYNC,
EVENTOUT -
----86M13 PH9 I/OFT- I2C3_SMBA, TIM12_CH2,
DCMI_D0, EVENTOUT -
- - - - 87 L13 PH10 I/O FT - TIM5_CH1, DCMI_D1,
EVENTOUT -
- - - - 88 L12 PH11 I/O FT - TIM5_CH2, DCMI_D2,
EVENTOUT -
----89K12 PH12 I/OFT- TIM5_CH3, DCMI_D3,
EVENTOUT -
----90H12 V
SS S- -
----91J12 V
DD S- -
33 J1 51 73 92 P12 PB12 I/O FT -
SPI2_NSS, I2S2_WS,
I2C2_SMBA, USART3_CK,
TIM1_BKIN, CAN2_RX,
OTG_HS_ULPI_D5,
ETH_RMII_TXD0,
ETH_MII_TXD0,
OTG_HS_ID, EVENTOUT
-
34 H2 52 74 93 P13 PB13 I/O FT -
SPI2_SCK, I2S2_SCK,
USART3_CTS, TIM1_CH1N,
CAN2_TX,
OTG_HS_ULPI_D6,
ETH_RMII_TXD1,
ETH_MII_TXD1, EVENTOUT
OTG_HS_
VBUS
35 H1 53 75 94 R14 PB14 I/O FT -
SPI2_MISO, TIM1_CH2N,
TIM12_CH1, OTG_HS_DM
USART3_RTS, TIM8_CH2N,
EVENTOUT
-
36 G1 54 76 95 R15 PB15 I/O FT -
SPI2_MOSI, I2S2_SD,
TIM1_CH3N, TIM8_CH3N,
TIM12_CH2, OTG_HS_DP,
RTC_50Hz
, EVENTOUT
-
- - 55 77 96 P15 PD8 I/O FT - FSMC_D13, USART3_TX,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DocID15818 Rev 12 51/179
STM32F20xxx Pinouts and pin description
178
- - 56 78 97 P14 PD9 I/O FT - FSMC_D14, USART3_RX,
EVENTOUT -
- - 57 79 98 N15 PD10 I/O FT - FSMC_D15, USART3_CK,
EVENTOUT -
- - 58 80 99 N14 PD11 I/O FT - FSMC_A16,USART3_CTS,
EVENTOUT -
- - 59 81 100 N13 PD12 I/O FT - FSMC_A17,TIM4_CH1,
USART3_RTS, EVENTOUT -
- - 60 82 101 M15 PD13 I/O FT - FSMC_A18,TIM4_CH2,
EVENTOUT -
---83102- V
SS S- -
---84103J13 V
DD S- -
- - 61 85 104 M14 PD14 I/O FT - FSMC_D0,TIM4_CH3,
EVENTOUT -
- - 62 86 105 L14 PD15 I/O FT - FSMC_D1,TIM4_CH4,
EVENTOUT -
- - - 87 106 L15 PG2 I/O FT - FSMC_A12, EVENTOUT -
- - - 88 107 K15 PG3 I/O FT - FSMC_A13, EVENTOUT -
- - - 89 108 K14 PG4 I/O FT - FSMC_A14, EVENTOUT -
- - - 90 109 K13 PG5 I/O FT - FSMC_A15, EVENTOUT -
- - - 91 110 J15 PG6 I/O FT - FSMC_INT2, EVENTOUT -
- - - 92 111 J14 PG7 I/O FT - FSMC_INT3 ,USART6_CK,
EVENTOUT -
- - - 93 112 H14 PG8 I/O FT -
USART6_RTS,
ETH_PPS_OUT,
EVENTOUT
-
---94113G12 V
SS S- -
---95114H13 V
DD S- -
37 G2 63 96 115 H15 PC6 I/O FT -
I2S2_MCK, TIM8_CH1,
SDIO_D6, USART6_TX,
DCMI_D0, TIM3_CH1,
EVENTOUT
-
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
52/179 DocID15818 Rev 12
38 F2 64 97 116 G15 PC7 I/O FT -
I2S3_MCK, TIM8_CH2,
SDIO_D7, USART6_RX,
DCMI_D1, TIM3_CH2,
EVENTOUT
-
39 F3 65 98 117 G14 PC8 I/O FT -
TIM8_CH3,SDIO_D0,
TIM3_CH3, USART6_CK,
DCMI_D2, EVENTOUT
-
40 D1 66 99 118 F14 PC9 I/O FT -
I2S2_CKIN, I2S3_CKIN,
MCO2, TIM8_CH4,
SDIO_D1, I2C3_SDA,
DCMI_D3, TIM3_CH4,
EVENTOUT
-
41 E2 67 100 119 F15 PA8 I/O FT -
MCO1, USART1_CK,
TIM1_CH1, I2C3_SCL,
OTG_FS_SOF, EVENTOUT
-
42 E3 68 101 120 E15 PA9 I/O FT -
USART1_TX, TIM1_CH2,
I2C3_SMBA, DCMI_D0,
EVENTOUT
OTG_FS_
VBUS
43 D3 69 102 121 D15 PA10 I/O FT -
USART1_RX, TIM1_CH3,
OTG_FS_ID,DCMI_D1,
EVENTOUT
-
44 D2 70 103 122 C15 PA11 I/O FT -
USART1_CTS, CAN1_RX,
TIM1_CH4,OTG_FS_DM,
EVENTOUT
-
45 C1 71 104 123 B15 PA12 I/O FT -
USART1_RTS, CAN1_TX,
TIM1_ETR, OTG_FS_DP,
EVENTOUT
-
46 B2 72 105 124 A15 PA13
(JTMS-SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT -
47 C2 73 106 125 F13 VCAP_2 S- -
- B1 74 107 126 F12 VSS S- -
48 A8 75 108 127 G13 VDD S- -
- - - - 128 E12 PH13 I/O FT - TIM8_CH1N, CAN1_TX,
EVENTOUT -
- - - - 129 E13 PH14 I/O FT - TIM8_CH2N, DCMI_D4,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DocID15818 Rev 12 53/179
STM32F20xxx Pinouts and pin description
178
- - - - 130 D13 PH15 I/O FT - TIM8_CH3N, DCMI_D11,
EVENTOUT -
----131E14 PI0 I/OFT-
TIM5_CH4, SPI2_NSS,
I2S2_WS, DCMI_D13,
EVENTOUT
-
----132D14 PI1 I/OFT- SPI2_SCK, I2S2_SCK,
DCMI_D8, EVENTOUT -
----133C14 PI2 I/OFT- TIM8_CH4 ,SPI2_MISO,
DCMI_D9, EVENTOUT -
----134C13 PI3 I/OFT-
TIM8_ETR, SPI2_MOSI,
I2S2_SD, DCMI_D10,
EVENTOUT
-
----135D9 V
SS S- -
----136C9 V
DD S- -
49 A1 76 109 137 A14 PA14
(JTCK-SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT -
50 A2 77 110 138 A13 PA15 (JTDI) I/O FT -
JTDI, SPI3_NSS,
I2S3_WS,TIM2_CH1_ETR,
SPI1_NSS, EVENTOUT
-
51 B3 78 111 139 B14 PC10 I/O FT -
SPI3_SCK, I2S3_SCK,
UART4_TX, SDIO_D2,
DCMI_D8, USART3_TX,
EVENTOUT
-
52 C3 79 112 140 B13 PC11 I/O FT -
UART4_RX, SPI3_MISO,
SDIO_D3,
DCMI_D4,USART3_RX,
EVENTOUT
-
53 A3 80 113 141 A12 PC12 I/O FT -
UART5_TX, SDIO_CK,
DCMI_D9, SPI3_MOSI,
I2S3_SD, USART3_CK,
EVENTOUT
-
--81114142B12 PD0 I/OFT- FSMC_D2,CAN1_RX,
EVENTOUT -
- - 82 115 143 C12 PD1 I/O FT - FSMC_D3, CAN1_TX,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
54/179 DocID15818 Rev 12
54 C7 83 116 144 D12 PD2 I/O FT -
TIM3_ETR,UART5_RX,
SDIO_CMD, DCMI_D11,
EVENTOUT
-
- - 84 117 145 D11 PD3 I/O FT - FSMC_CLK,USART2_CTS,
EVENTOUT -
- - 85 118 146 D10 PD4 I/O FT - FSMC_NOE, USART2_RTS,
EVENTOUT -
- - 86 119 147 C11 PD5 I/O FT - FSMC_NWE,USART2_TX,
EVENTOUT -
- - - 120 148 D8 VSS S- -
- - - 121 149 C8 VDD S- -
- - 87 122 150 B11 PD6 I/O FT - FSMC_NWAIT,
USART2_RX, EVENTOUT -
- - 88 123 151 A11 PD7 I/O FT - USART2_CK,FSMC_NE1,
FSMC_NCE2, EVENTOUT -
- - - 124 152 C10 PG9 I/O FT -
USART6_RX,
FSMC_NE2,FSMC_NCE3,
EVENTOUT
-
- - - 125 153 B10 PG10 I/O FT - FSMC_NCE4_1,
FSMC_NE3, EVENTOUT -
- - - 126 154 B9 PG11 I/O FT -
FSMC_NCE4_2,
ETH_MII_TX_EN ,
ETH _RMII_TX_EN,
EVENTOUT
-
- - - 127 155 B8 PG12 I/O FT - FSMC_NE4, USART6_RTS,
EVENTOUT -
- - - 128 156 A8 PG13 I/O FT -
FSMC_A24, USART6_CTS,
ETH_MII_TXD0,
ETH_RMII_TXD0,
EVENTOUT
-
- - - 129 157 A7 PG14 I/O FT -
FSMC_A25, USART6_TX,
ETH_MII_TXD1,
ETH_RMII_TXD1,
EVENTOUT
-
- - - 130 158 D7 VSS S- -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DocID15818 Rev 12 55/179
STM32F20xxx Pinouts and pin description
178
- - - 131 159 C7 VDD S- - -- -
- - - 132 160 B7 PG15 I/O FT - USART6_CTS, DCMI_D13,
EVENTOUT -
55 A4 89 133 161 A10 PB3
(JTDO/TRACESWO) I/O FT -
JTDO/ TRACESWO,
SPI3_SCK, I2S3_SCK,
TIM2_CH2, SPI1_SCK,
EVENTOUT
-
56 B4 90 134 162 A9 PB4 I/O FT -
NJTRST, SPI3_MISO,
TIM3_CH1, SPI1_MISO,
EVENTOUT
-
57 A5 91 135 163 A6 PB5 I/O FT -
I2C1_SMBA, CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT, TIM3_CH2,
SPI1_MOSI, SPI3_MOSI,
DCMI_D10, I2S3_SD,
EVENTOUT
-
58 B5 92 136 164 B6 PB6 I/O FT -
I2C1_SCL,, TIM4_CH1,
CAN2_TX,
DCMI_D5,USART1_TX,
EVENTOUT
-
59 A6 93 137 165 B5 PB7 I/O FT -
I2C1_SDA, FSMC_NL(6),
DCMI_VSYNC,
USART1_RX, TIM4_CH2,
EVENTOUT
-
60 B6 94 138 166 D6 BOOT0 I B - VPP
61 B7 95 139 167 A5 PB8 I/O FT -
TIM4_CH3,SDIO_D4,
TIM10_CH1, DCMI_D6,
ETH_MII_TXD3, I2C1_SCL,
CAN1_RX, EVENTOUT
-
62 A7 96 140 168 B4 PB9 I/O FT -
SPI2_NSS, I2S2_WS,
TIM4_CH4, TIM11_CH1,
SDIO_D5, DCMI_D7,
I2C1_SDA, CAN1_TX,
EVENTOUT
-
- - 97 141 169 A4 PE0 I/O FT - TIM4_ETR, FSMC_NBL0,
DCMI_D2, EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
56/179 DocID15818 Rev 12
- - 98 142 170 A3 PE1 I/O FT - FSMC_NBL1, DCMI_D3,
EVENTOUT -
-----D5 V
SS S- -
63 D8 - - - - VSS S- -
- - 99 143 171 C6 RFU (7) -
64 D9 100 144 172 C5 VDD S- -
----173D4 PI4 I/OFT- TIM8_BKIN, DCMI_D5,
EVENTOUT -
----174C4 PI5 I/OFT-TIM8_CH1, DCMI_VSYNC,
EVENTOUT -
----175C3 PI6 I/OFT- TIM8_CH2, DCMI_D6,
EVENTOUT -
----176C2 PI7 I/OFT- TIM8_CH3, DCMI_D7,
EVENTOUT -
- C8 - - - - IRROFF I/O - -
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a
maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics
website: www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator OFF), then PA0 is
used as an internal Reset (active low).
6. FSMC_NL pin is also named FSMC_NADV on memory devices.
7. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Table 9. FSMC pin definition
Pins
FSMC
LQFP100
CF NOR/PSRAM/S
RAM NOR/PSRAM Mux NAND 16 bit
PE2 - A23 A23 - Yes
PE3 - A19 A19 - Yes
DocID15818 Rev 12 57/179
STM32F20xxx Pinouts and pin description
178
PE4 - A20 A20 - Yes
PE5 - A21 A21 - Yes
PE6 - A22 A22 - Yes
PF0 A0 A0 - - -
PF1 A1 A1 - - -
PF2 A2 A2 - - -
PF3 A3 A3 - - -
PF4 A4 A4 - - -
PF5 A5 A5 - - -
PF6 NIORD - - - -
PF7 NREG - - - -
PF8 NIOWR - - - -
PF9 CD - - - -
PF10 INTR - - - -
PF12 A6 A6 - - -
PF13 A7 A7 - - -
PF14 A8 A8 - - -
PF15 A9 A9 - - -
PG0 A10 A10 - - -
PG1 - A11 - - -
PE7 D4 D4 DA4 D4 Yes
PE8 D5 D5 DA5 D5 Yes
PE9 D6 D6 DA6 D6 Yes
PE10 D7 D7 DA7 D7 Yes
PE11 D8 D8 DA8 D8 Yes
PE12 D9 D9 DA9 D9 Yes
PE13 D10 D10 DA10 D10 Yes
PE14 D11 D11 DA11 D11 Yes
PE15 D12 D12 DA12 D12 Yes
PD8 D13 D13 DA13 D13 Yes
PD9 D14 D14 DA14 D14 Yes
PD10 D15 D15 DA15 D15 Yes
PD11 - A16 A16 CLE Yes
Table 9. FSMC pin definition (continued)
Pins
FSMC
LQFP100
CF NOR/PSRAM/S
RAM NOR/PSRAM Mux NAND 16 bit
Pinouts and pin description STM32F20xxx
58/179 DocID15818 Rev 12
PD12 - A17 A17 ALE Yes
PD13 - A18 A18 Yes
PD14 D0 D0 DA0 D0 Yes
PD15 D1 D1 DA1 D1 Yes
PG2 - A12 - - -
PG3 - A13 - - -
PG4 - A14 - - -
PG5 - A15 - - -
PG6 - - - INT2 -
PG7 - - - INT3 -
PD0 D2 D2 DA2 D2 Yes
PD1 D3 D3 DA3 D3 Yes
PD3 CLK CLK - Yes
PD4 NOE NOE NOE NOE Yes
PD5 NWE NWE NWE NWE Yes
PD6 NWAIT NWAIT NWAIT NWAIT Yes
PD7 NE1 NE1 NCE2 Yes
PG9 NE2 NE2 NCE3 -
PG10 NCE4_1 NE3 NE3 - -
PG11 NCE4_2 - - - -
PG12 - NE4 NE4 - -
PG13 - A24 A24 - -
PG14 - A25 A25 - -
PB7 - NADV NADV - Yes
PE0 - NBL0 NBL0 - Yes
PE1 - NBL1 NBL1 - Yes
Table 9. FSMC pin definition (continued)
Pins
FSMC
LQFP100
CF NOR/PSRAM/S
RAM NOR/PSRAM Mux NAND 16 bit
STM32F20xxx Pinouts and pin description
DocID15818 Rev 12 59/179
Table 10. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Port A
PA0-WKUP - TIM2_CH1_ETR TIM 5_CH1 TIM8_ETR - - USART2_CTS UART4_TX - - ETH_MII_CRS - - - EVENTOUT
PA1 - TIM2_CH2 TIM5_CH2 - - - USART2_RTS UART4_RX - -
ETH_MII
_RX_CLK
ETH_RMII
_REF_CLK
---EVENTOUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - USART2_TX - - - ETH_MDIO - - - EVENTOUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - USART2_RX - - OTG_HS_ULPI_D0 ETH _MII_COL - - - EVENTOUT
PA4 - - - - - SPI1_NSS SPI3_NSS
I2S3_WS USART2_CK - - - OTG_HS_SOF DCMI_HSYNC - EVENTOUT
PA5 - TIM2_CH1_ETR - TIM8_CH1N - SPI1_SCK - - - - OTG_HS_ULPI_C
K - - - - EVENTOUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO - - - TIM13_CH1 - - - DCMI_PIXCK - EVENTOUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI - - - TIM14_CH1 -
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
---EVENTOUT
PA8 MCO1 TIM1_CH1 - - I2C3_SCL - - USART1_CK - - OTG_FS_SOF - - - - EVENTOUT
PA9 - TIM1_CH2 - - I2C3_SMBA - - USART1_TX - - - - DCMI_D0 - EVENTOUT
PA10 - TIM1_CH3 - - - - - USART1_RX - - OTG_FS_ID - - DCMI_D1 - EVENTOUT
PA11 - TIM1_CH4 - - - - - USART1_CTS - CAN1_RX OTG_FS_DM - - - - EVENTOUT
PA12 - TIM1_ETR - - - - - USART1_RTS - CAN1_TX OTG_FS_DP - - - - EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - - - - - - - - EVENTOUT
PA14 JTCK-
SWCLK - - - - - - - - - - - - - - EVENTOUT
PA15 JT DI TIM 2_CH1
TIM 2_ETR - - - SPI1_NSS SPI3_NSS
I2S3_WS - - - - - - - - EVENTOUT
Pinouts and pin description STM32F20xxx
60/179 DocID15818 Rev 12
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - - - - - OTG_HS_ULPI_D1 ETH _MII_RXD2 - - - EVENTOUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - - - - - OTG_HS_ULPI_D2 ETH _MII_RXD3 - - - EVENTOUT
PB2 - - - - - - - - - - - - - - - EVENTOUT
PB3 JTDO/
TRACESWO TIM2_CH2 - - - SPI1_SCK
SPI3_SCK
I2S3_SCK - - - - - - - - EVENTOUT
PB4 JTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO - - - - - - - - EVENTOUT
PB5 - - TIM3_CH2 - I2C1_SMBA SPI1_MOSI
SPI3_MOSI
I2S3_SD - - CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT - DCMI_D10 - EVENTOUT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - CAN2_TX - - - DCMI_D5 - EVENTOUT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - - FSMC_NL DCMI_VSYNC - EVENTOUT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - CAN1_RX - ETH _MII_TXD3 SDIO_D4 DCMI_D6 - EVENTOUT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS
I2S2_WS - - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENTOUT
PB10 - TIM2_CH3 - - I2C2_SCL
SPI2_SCK
I2S2_SCK - USART3_TX - - OTG_HS_ULPI_D3 ETH_ MII_RX_ER - - - EVENTOUT
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - OTG_HS_ULPI_D4
ETH _MII_TX_EN
ETH
_RMII_TX_EN
---EVENTOUT
PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS
I2S2_WS - USART3_CK - CAN2_RX OTG_HS_ULPI_D5
ETH _MII_TXD0
ETH _RMII_TXD0 OTG_HS_ID - - EVENTOUT
PB13 - TIM1_CH1N - - - SPI2_SCK
I2S2_SCK - USART3_CTS - CAN2_TX OTG_HS_ULPI_D6
ETH _MII_TXD1
ETH _RMII_TXD1 ---EVENTOUT
PB14 - TIM1_CH2N - TIM8_CH2N - SPI2_MISO - USART3_RTS - TIM12_CH1 - - OTG_HS_DM - - EVENTOUT
PB15 RTC_50Hz TIM1_CH3N - TIM8_CH3N - SPI2_MOSI
I2S2_SD - - - TIM12_CH2 - - OTG_HS_DP - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
STM32F20xxx Pinouts and pin description
DocID15818 Rev 12 61/179
Port C
PC0 - - - - - - - - - - OTG_HS_ULPI_
STP - - - - EVENTOUT
PC1 - - - - - - - - - - - ETH_MDC - - - EVENTOUT
PC2 - - - - - SPI2_MISO - - - - OTG_HS_ULPI_
DIR ETH _MII_TXD2 - - - EVENTOUT
PC3 - - - - - SPI2_MOSI - - - - OTG_HS_ULPI_
NXT
ETH
_MII_TX_CLK ---EVENTOUT
PC4 - - - - - - - - - - - ETH_MII_RXD0
ETH_RMII_RXD0 ---EVENTOUT
PC5 - - - - - - - - - - - ETH _MII_RXD1
ETH _RMII_RXD1 ---EVENTOUT
PC6 - - TIM3_CH1 TIM8_CH1 - I2S2_MCK - - USART6_TX - - - SDIO_D6 DCMI_D0 - EVENTOUT
PC7 - - TIM3_CH2 TIM8_CH2 - - I2S3_MCK - USART6_RX - - - SDIO_D7 DCMI_D1 - EVENTOUT
PC8 - - TIM3_CH3 TIM8_CH3 - - - - USART6_CK - - - SDIO_D0 DCMI_D2 - EVENTOUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S2_CKIN I2S3_CKIN - - - - - SDIO_D1 DCMI_D3 - EVENTOUT
PC10 - - - - - - SPI3_SCK
I2S3_SCK USART3_TX UART4_TX - - - SDIO_D2 DCMI_D8 - EVENTOUT
PC11 - - - - - - SPI3_MISO USART3_RX UART4_RX - - - SDIO_D3 DCMI_D4 - EVENTOUT
PC12 - - - - - - SPI3_MOSI
I2S3_SD USART3_CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENTOUT
PC13 - - - - - - - - - - - - - - - EVENTOUT
PC14-
OSC32_IN -- - - - - - - - - - - - --EVENTOUT
PC15-
OSC32_OU
T
-- - - - - - - - - - - - --EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Pinouts and pin description STM32F20xxx
62/179 DocID15818 Rev 12
Port D
PD0 - - - - - - - - - CAN1_RX - - FSMC_D2 - - EVENTOUT
PD1 - - - - - - - - - CAN1_TX - - FSMC_D3 - - EVENTOUT
PD2 - - TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_D11 - EVENTOUT
PD3 - - - - - - - USART2_CTS - - - - FSMC_CLK - - EVENTOUT
PD4 - - - - - - - USART2_RTS - - - - FSMC_NOE - - EVENTOUT
PD5 - - - - - - - USART2_TX - - - - FSMC_NWE - - EVENTOUT
PD6 - - - - - - - USART2_RX - - - - FSMC_NWAIT - - EVENTOUT
PD7 - - - - - - - USART2_CK - - - - FSMC_NE1/
FSMC_NCE2 - - EVENTOUT
PD8 - - - - - - - USART3_TX - - - - FSMC_D13 - - EVENTOUT
PD9 - - - - - - - USART3_RX - - - - FSMC_D14 - - EVENTOUT
PD10 - - - - - - - USART3_CK - - - - FSMC_D15 - - EVENTOUT
PD11 - - - - - - - USART3_CTS - - - - FSMC_A16 - - EVENTOUT
PD12 - - TIM4_CH1 - - - - USART3_RTS - - - - FSMC_A17 - - EVENTOUT
PD13 - - TIM4_CH2 - - - - - - - - - FSMC_A18 - - EVENTOUT
PD14 - - TIM4_CH3 - - - - - - - - - FSMC_D0 - - EVENTOUT
PD15 - - TIM4_CH4 - - - - - - - - - FSMC_D1 - - EVENTOUT
Port E
PE0 - - TIM4_ETR - - - - - - - - - FSMC_NBL0 DCMI_D2 - EVENTOUT
PE1 - - - - - - - - - - - - FSMC_NBL1 DCMI_D3 - EVENTOUT
PE2 TRACECLK - - - - - - - - - - ETH _MII_TXD3 FSMC_A23 - - EVENTOUT
PE3 TRACED0 - - - - - - - - - - - FSMC_A19 - - EVENTOUT
PE4 TRACED1 - - - - - - - - - - - FSMC_A20 DCMI_D4 - EVENTOUT
PE5 TRACED2 - - TIM9_CH1 - - - - - - - - FSMC_A21 DCMI_D6 - EVENTOUT
PE6 TRACED3 - - TIM9_CH2 - - - - - - - - FSMC_A22 DCMI_D7 - EVENTOUT
PE7 - TIM1_ETR - - - - - - - - - - FSMC_D4 - - EVENTOUT
PE8 - TIM1_CH1N - - - - - - - - - - FSMC_D5 - - EVENTOUT
PE9 - TIM1_CH1 - - - - - - - - - - FSMC_D6 - - EVENTOUT
PE10 - TIM1_CH2N - - - - - - - - - - FSMC_D7 - - EVENTOUT
PE11 - TIM1_CH2 - - - - - - - - - - FSMC_D8 - - EVENTOUT
PE12 - TIM1_CH3N - - - - - - - - - - FSMC_D9 - - EVENTOUT
PE13 - TIM1_CH3 - - - - - - - - - - FSMC_D10 - - EVENTOUT
PE14 - TIM1_CH4 - - - - - - - - - - FSMC_D11 - - EVENTOUT
PE15 - TIM1_BKIN - - - - - - - - - - FSMC_D12 - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
STM32F20xxx Pinouts and pin description
DocID15818 Rev 12 63/179
Port F
PF0 - - - - I2C2_SDA - - - - - - - FSMC_A0 - - EVENTOUT
PF1 - - - - I2C2_SCL - - - - - - FSMC_A1 - - EVENTOUT
PF2 - - - - I2C2_SMBA - - - - - - - FSMC_A2 - - EVENTOUT
PF3 - - - - - - - - - - - - FSMC_A3 - - EVENTOUT
PF4 - - - - - - - - - - - - FSMC_A4 - - EVENTOUT
PF5 - - - - - - - - - - - - FSMC_A5 - - EVENTOUT
PF6 - - - TIM10_CH1 - - - - - - - - FSMC_NIORD - - EVENTOUT
PF7 - - - TIM11_CH1 - - - - - - - - FSMC_NREG - - EVENTOUT
PF8 - - - - - - - - - TIM13_CH1 - - FSMC_NIOWR - - EVENTOUT
PF9 - - - - - - - - - TIM14_CH1 - - FSMC_CD - - EVENTOUT
PF10 - - - - - - - - - - - - FSMC_INTR - - EVENTOUT
PF11 - - - - - - - - - - - - DCMI_D12 - EVENTOUT
PF12 - - - - - - - - - - - - FSMC_A6 - - EVENTOUT
PF13 - - - - - - - - - - - - FSMC_A7 - - EVENTOUT
PF14 - - - - - - - - - - - - FSMC_A8 - - EVENTOUT
PF15 - - - - - - - - - - - - FSMC_A9 - - EVENTOUT
Port G
PG0 - - - - - - - - - - - - FSMC_A10 - - EVENTOUT
PG1 - - - - - - - - - - - - FSMC_A11 - - EVENTOUT
PG2 - - - - - - - - - - - - FSMC_A12 - - EVENTOUT
PG3 - - - - - - - - - - - - FSMC_A13 - - EVENTOUT
PG4 - - - - - - - - - - - - FSMC_A14 - - EVENTOUT
PG5 - - - - - - - - - - - - FSMC_A15 - - EVENTOUT
PG6 - - - - - - - - - - - - FSMC_INT2 - - EVENTOUT
PG7 - - - - - - - - USART6_CK - - - FSMC_INT3 - - EVENTOUT
PG8 - - - - - - - - USART6_RTS - - ETH _PPS_OUT - - - EVENTOUT
PG9 - - - - - - - - USART6_RX - - - FSMC_NE2/
FSMC_NCE3 - - EVENTOUT
PG10 - - - - - - - - - - - - FSMC_NCE4_1/
FSMC_NE3 - - EVENTOUT
PG11 - - - - - - - - - - -
ETH _MII_TX_EN
ETH
_RMII_TX_EN
FSMC_NCE4_2 - - EVENTOUT
PG12 - - - - - - - - USART6_RTS - - - FSMC_NE4 - - EVENTOUT
PG13 - - - - - - - - UART6_CTS - - ETH _MII_TXD0
ETH _RMII_TXD0 FSMC_A24 - - EVENTOUT
PG14 - - - - - - - - USART6_TX - - ETH _MII_TXD1
ETH _RMII_TXD1 FSMC_A25 - - EVENTOUT
PG15 - - - - - - - - USART6_CTS - - - - DCMI_D13 - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Pinouts and pin description STM32F20xxx
64/179 DocID15818 Rev 12
Port H
PH0 -
OSC_IN -- - - - - - - - - - - - --EVENTOUT
PH1 -
OSC_OUT - - - - - - - - - - - - EVENTOUT
PH2 - - - - - - - - ETH _MII_CRS - - - EVENTOUT
PH3 - - - - - - - - ETH _MII_COL - - - EVENTOUT
PH4 - - I2C2_SCL - - - - - OTG_HS_ULPI_N
XT - - - - EVENTOUT
PH5 - - I2C2_SDA - - - - - - - - - - EVENTOUT
PH6 - - I2C2_SMBA - - - - TIM12_CH1 - ETH _MII_RXD2 - - - EVENTOUT
PH7 - - I2C3_SCL - - - - - - ETH _MII_RXD3 - - - EVENTOUT
PH8 - - I2C3_SDA - - - - - - - - DCMI_HSYNC - EVENTOUT
PH9 - - I2C3_SMBA - - - - TIM12_CH2 - - - DCMI_D0 - EVENTOUT
PH10 - - TIM5_CH1 - - - - - - - - DCMI_D1 - EVENTOUT
PH11 - - TIM5_CH2 - - - - - - - - DCMI_D2 - EVENTOUT
PH12 - - TIM5_CH3 - - - - - - - - DCMI_D3 - EVENTOUT
PH13 - - TIM8_CH1N - - - - CAN1_TX - - - - - EVENTOUT
PH14 - - TIM8_CH2N - - - - - - - - DCMI_D4 - EVENTOUT
PH15 - - TIM8_CH3N - - - - - - - - DCMI_D11 - EVENTOUT
Port I
PI0 - - TIM5_CH4 SPI2_NSS
I2S2_WS - - - - - - - DCMI_D13 - EVENTOUT
PI1 - - SPI2_SCK
I2S2_SCK - - - - - - - DCMI_D8 - EVENTOUT
PI2 - - TIM8_CH4 SPI2_MISO - - - - - - - DCMI_D9 - EVENTOUT
PI3 - - TIM8_ETR SPI2_MOSI
I2S2_SD - - - - - - - DCMI_D10 - EVENTOUT
PI4 - - TIM8_BKIN - - - - - - - - DCMI_D5 - EVENTOUT
PI5 - - TIM8_CH1 - - - - - - - - DCMI_VSYNC - EVENTOUT
PI6 - - TIM8_CH2 - - - - - - - - DCMI_D6 - EVENTOUT
PI7 - - TIM8_CH3 - - - - - - - - DCMI_D7 - EVENTOUT
PI8 - - - - - - - - - - - - EVENTOUT
PI9 - - - - - - CAN1_RX - - - - - EVENTOUT
PI10 - - - - - - - - ETH _MII_RX_ER - - - EVENTOUT
PI11 - - - - - - - OTG_HS_ULPI_
DIR - - - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
DocID15818 Rev 12 65/179
STM32F20xxx Memory mapping
178
5 Memory mapping
The memory map is shown in Figure 16.
Memory mapping STM32F20xxx
66/179 DocID15818 Rev 12
Figure 16. Memory map
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
-BYTE
BLOCK
.OTUSED
-BYTE
BLOCK
&3-#REGISTERS
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
-BYTE
BLOCK
32!-
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X!
X"&&&&&&&
X#
X$&&&&&&&
X%
X&&&&&&&&
-BYTE
BLOCK
#ODE
&LASH
XX&&&&&&&
X&&&X&&&!&
X&&&#X&&&#
XX&&&&&
X#X&&&&&&
XX&&&&&
3YSTEMMEMORY/40
2ESERVED
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
32!-+"ALIASED
BYBITBANDING
2ESERVED
XX"&&&
X#X&&&&
XX&&&&&&&
4)-
4)-
XX&&
4)-
4)-
4)-
4)-
2ESERVED
XX&&
XX"&&
X#X&&&
XX&&
XX&&
XX&&
24#"+0REGISTERS XX"&&
77$' X#X&&&
)7$' XX&&
2ESERVED XX&&
30))3 XX"&&
30))3 X#X&&&
2ESERVED
XX&&
53!24 XX&&
XX"&&
53!24
5!24 X#X&&&
5!24 XX&&
)# XX&&
)# XX"&&
2ESERVED
X#X&&&
XX&&
072
XX&&
$!#$!#
XX&&&&
4)-07- XX&&
4)-07- XX&&
0ORT!
53!24 XX&&
XX&&
0ORT"
XX&&&
0ORT#
XX&&
0ORT$
XX&&
0ORT%
XX"&&
0ORT&
X#X&&&
0ORT'
XX&&
2ESERVED XX&&
XX"&&
XX&&
XX&&
53!24
XX"&&
XX&&
X#X&&&
XX&&
XX&&
2ESETCLOCKCONTROLLER2##
XX"&&
0ORT( X#X&&&
&LASHINTERFACE
XX&&
2ESERVED XX&&&
#2# XX&&
&3-#BANK./2032!- XX&&&&&&
&3-#BANK./2032!- XX&&&&&&
&3-#BANK./2032!- XX"&&&&&&
&3-#BANK./2032!- X#X&&&&&&&
&3-#BANK.!.$.!.$ XX&&&&&&&
&3-#BANK.!.$.!.$ XX&&&&&&&
&3-#BANK0##ARD XX&&&&&&&
&3-#CONTROLREGISTER X!X!&&&
X!X"&&&&&&&
AIC
/PTION"YTES
4)-
393#&'
XX&&
XX"&&
3$)/
2ESERVED
2ESERVED X#X&&&&
%84) X#X&&&
2ESERVED
"X#!.
XX&&
XX&&
XX"&&
XX&&&&&&&
2ESERVED
XX&&
$#-)
XX&&&
2ESERVED
XX&&&&
53"/4'&3
XX&&&&&&&
2ESERVED
XX&&&&
53"/4'(3
2ESERVED XX&&&&
XX&&
%4(%2.%4
2ESERVED XX&&&
XX&&
XX&&
$-!
$-!
2ESERVED XX&&&
XX&&&
"+032!-
X#X&&&
XX"&&
2ESERVED XX&&
0ORT)
4)-
4)-
30)
!$#!$#!$#
2ESERVED
"X#!.
X#X&&&
)#
2ESERVED
4)-
4)-
4)-
X#X&&&
XX"&&
XX&&
32!-+"ALIASED
BYBITBANDING
2ESERVED X&&&#X&&&&&&&
X&&&!X&&&&&&2ESERVED
2ESERVED
XX&&&
2.'
2ESERVED XX&&&
XX&&&
2ESERVED
2ESERVED
DocID15818 Rev 12 67/179
STM32F20xxx Electrical characteristics
178
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 17.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 18.
Figure 17. Pin loading conditions Figure 18. Pin input voltage
-36
#P&
-#5PIN
-36
-#5PIN
6).
Electrical characteristics STM32F20xxx
68/179 DocID15818 Rev 12
6.1.6 Power supply scheme
Figure 19. Power supply scheme
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect REGOFF and IRROFF pins, refer to Section 3.16: Voltage regulator.
3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB, to ensure good device operation. It
is not recommended to remove filtering capacitors to reduce PCB size or cost. This might
cause incorrect device operation.
DLI
9''

9%$7
*3,2V
287
,1 .HUQHOORJLF
&38
GLJLWDO
5$0
%DFNXSFLUFXLWU\
26&.57&
%DFNXSUHJLVWHUV
EDFNXS5$0
:DNHXSORJLF
îQ)
î)
9
966

9''$
95()
95()
966$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
95()
Q)
)
9''
)ODVKPHPRU\
9&$3B
9&$3B
î)
5(*2))
,552))
3RZHUVZLWFK
$QDORJ
5&V3//

9ROWDJH
UHJXODWRU
DocID15818 Rev 12 69/179
STM32F20xxx Electrical characteristics
178
6.1.7 Current consumption measurement
Figure 20. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
AI
6"!4
6$$
6$$!
)$$?6"!4
)$$
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage (including VDDA, VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on five-volt tolerant pin(2)
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4
Input voltage on any other pin VSS–0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
Electrical characteristics STM32F20xxx
70/179 DocID15818 Rev 12
6.3 Operating conditions
6.3.1 General operating conditions
Table 12. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
120
mA
IVSS Total current out of VSS ground lines (sink)(1) 120
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN) (2)
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC
characteristics.
Injected current on five-volt tolerant I/O(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
–5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 125 °C
Table 14. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency 0 120
MHzfPCLK1 Internal APB1 clock frequency 0 30
fPCLK2 Internal APB2 clock frequency 0 60
DocID15818 Rev 12 71/179
STM32F20xxx Electrical characteristics
178
VDD Standard operating voltage 1.8(1) 3.6
V
VDDA(2)
Analog operating voltage
(ADC limited to 1 M samples) Must be the same potential as
VDD(3)
1.8(1) 3.6
Analog operating voltage
(ADC limited to 2 M samples) 2.4 3.6
VBAT Backup operating voltage 1.65 3.6
VIN
Input voltage on RST and FT pins
2V VDD 3.6 V –0.3 5.5
1.7 V VDD 2 V –0.3 5.2
Input voltage on TTa pins –0.3 VDD+0.3
Input voltage on BOOT0 pin 0 9
VCAP1 Internal core voltage to be supplied
externally in REGOFF mode 1.1 1.3
VCAP2
PD
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(4)
LQFP64 - 444
mW
WLCSP64+2 - 392
LQFP100 - 434
LQFP144 - 500
LQFP176 - 526
UFBGA176 - 513
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation –40 85
°C
Low-power dissipation(5) –40 105
Ambient temperature for 7 suffix
version
Maximum power dissipation –40 105
°C
Low-power dissipation(5) –40 125
TJ Junction temperature range
6 suffix version –40 105
°C
7 suffix version –40 125
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates
in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA
can be tolerated during power-up and power-down operation.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 14. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Electrical characteristics STM32F20xxx
72/179 DocID15818 Rev 12
Table 15. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
Number of wait
states at
maximum CPU
frequency
(fCPUmax=
120 MHz)(1)
I/O operation
FSMC_CLK
frequency for
synchronous
accesses
Possible
Flash
memory
operations
VDD =1.8 to
2.1 V(2)
Conversion
time up to
1Msps
16 MHz with
no Flash
memory wait
state
7(3)
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1Msps
18 MHz with
no Flash
memory wait
state
6(3)
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2Msps
24 MHz with
no Flash
memory wait
state
4(3)
Degraded
speed
performance
–I/O
compensation
works
up to 48 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(4)
Conversion
time up to
2Msps
30 MHz with
no Flash
memory wait
state
3(3)
Full-speed
operation
–I/O
compensation
works
–up to
60 MHz
when VDD =
3.0 to 3.6 V
–up to
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 21).
2. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
DocID15818 Rev 12 73/179
STM32F20xxx Electrical characteristics
178
Figure 21. Number of wait states versus fCPU and VDD range
1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range and
IRROFF is set to VDD.
6.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor to the
VCAP1/VCAP2 pins. CEXT is specified in Table 16.
Figure 22. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
AIB




























1XPEHURI:DLWVWDWHV
)FSX0+]
:DLWVWDWHVYV)FSXDQG9''UDQJH
 WR9
WR9
WR9
WR9
Table 16. VCAP1/VCAP2 operating conditions(1)
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
069
(65
5/HDN
&
Electrical characteristics STM32F20xxx
74/179 DocID15818 Rev 12
6.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 17. Operating conditions at power-up / power-down (regulator ON)
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator OFF)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise
time rate Power-up 20
VCAP_1 and VCAP_2 fall
time rate Power-down 20
DocID15818 Rev 12 75/179
STM32F20xxx Electrical characteristics
178
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising
edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling
edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising
edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling
edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising
edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling
edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling
edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising
edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling
edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising
edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling
edge) 2.65 2.84 3.02 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling
edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling
edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
Electrical characteristics STM32F20xxx
76/179 DocID15818 Rev 12
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 20: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
CoreMark code.
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97
VBORhyst(1) BOR hysteresis - 100 - mV
TRSTTEMPO(1)(2) Reset temporization 0.5 1.5 3.0 ms
IRUSH(1)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
- 160 200 mA
ERUSH(1)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. Guaranteed by design, not tested in production.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 19. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID15818 Rev 12 77/179
STM32F20xxx Electrical characteristics
178
Typical and maximum current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait
states from 90 to 120 MHz).
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Symbol Parameter Conditions fHCLK
Typ Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Run mode
External clock(3), all
peripherals enabled(4)
120 MHz 49 63 72
mA
90 MHz 38 51 61
60 MHz 26 39 49
30 MHz 14 27 37
25 MHz 11 24 34
16 MHz(5) 82130
8 MHz 5 17 27
4 MHz 3 16 26
2 MHz 2 15 25
External clock(3), all
peripherals disabled
120 MHz 21 34 44
90 MHz 17 30 40
60 MHz 12 25 35
30 MHz 7 20 30
25 MHz 5 18 28
16 MHz(5) 4.0 17.0 27.0
8 MHz 2.5 15.5 25.5
4 MHz 2.0 14.7 24.8
2 MHz 1.6 14.5 24.6
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. In this case HCLK = system clock/2.
Electrical characteristics STM32F20xxx
78/179 DocID15818 Rev 12
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(2), all
peripherals enabled(3)
120 MHz 61 81 93
mA
90 MHz 48 68 80
60 MHz 33 53 65
30 MHz 18 38 50
25 MHz 14 34 46
16 MHz(4) 10 30 42
8 MHz 6 26 38
4 MHz 4 24 36
2 MHz 3 23 35
External clock(2), all
peripherals disabled
120 MHz 33 54 66
90 MHz 27 47 59
60 MHz 19 39 51
30 MHz 11 31 43
25 MHz 8 28 41
16 MHz(4) 62638
8 MHz 4 24 36
4 MHz 3 23 35
2 MHz 2 23 34
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
4. In this case HCLK = system clock/2.
DocID15818 Rev 12 79/179
STM32F20xxx Electrical characteristics
178
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals ON
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals OFF
-36







#05FREQUNECY-(Z
#
#
#
#
#
#
#
)$$25.M!
-36





     
#05&REQUENCY-(Z
#
#
#
#
#
#
#
)$$25.M!
Electrical characteristics STM32F20xxx
80/179 DocID15818 Rev 12
Figure 25. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON
Figure 26. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF
-36









    


#
#
)$$25.M!
#05FREQUNECY-(Z
-36










      
#05&REQUENCY-(Z


#
#
)
$$25.M!
DocID15818 Rev 12 81/179
STM32F20xxx Electrical characteristics
178
Table 22. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Sleep mode
External clock(2),
all peripherals enabled(3)
120 MHz 38 51 61
mA
90 MHz 30 43 53
60 MHz 20 33 43
30 MHz 11 25 35
25 MHz 8 21 31
16 MHz 6 19 29
8 MHz 3.6 17.0 27.0
4 MHz 2.4 15.4 25.3
2 MHz 1.9 14.9 24.7
External clock(2), all
peripherals disabled
120 MHz 8 21 31
90 MHz 7 20 30
60 MHz 5 18 28
30 MHz 3.5 16.0 26.0
25 MHz 2.5 16.0 25.0
16 MHz 2.1 15.1 25.0
8 MHz 1.7 15.0 25.0
4 MHz 1.5 14.6 24.6
2 MHz 1.4 14.2 24.3
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is on (ADON bit is set in the ADC_CR2 register).
Electrical characteristics STM32F20xxx
82/179 DocID15818 Rev 12
Figure 27. Typical current consumption vs temperature in Sleep mode,
peripherals ON
Figure 28. Typical current consumption vs temperature in Sleep mode,
peripherals OFF
-36









     
#
#
#
#
#
#
#
)$$3,%%0M!
#05&REQUENCY-(Z
-36





#
#
#
#
#
#
#
#05&REQUENCY-(Z
)$$3,%%0M!
DocID15818 Rev 12 83/179
STM32F20xxx Electrical characteristics
178
Figure 29. Typical current consumption vs temperature in Stop mode
1. All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Supply current
in Stop mode
with main
regulator in
Run mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed oscillator
OFF (no independent watchdog)
0.55 1.2 11.00 20.00
mA
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.50 1.2 11.00 20.00
Supply current
in Stop mode
with main
regulator in
Low-power
mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed oscillator
OFF (no independent watchdog)
0.35 1.1 8.00 15.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.30 1.1 8.00 15.00
-36



              
4EMPERATURE
#
)DD?STOP?MR?FLHSTOP
)DD?STOP?MR?FLHDEEP
)DD?STOP?LP?FLHSTOP
)DD?STOP?LP?FLHDEEP
)$$34/0M!
Electrical characteristics STM32F20xxx
84/179 DocID15818 Rev 12
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, low-speed
oscillator and RTC ON 3.0 3.4 4.0 15.1 25.8
µA
Backup SRAM OFF, low-
speed oscillator and RTC ON 2.4 2.7 3.3 12.4 20.5
Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8
Backup SRAM OFF, RTC
OFF 1.7 1.9 2.2 9.8 19.2
1. Guaranteed by characterization results, not tested in production.
Table 25. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA =
105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_VBAT
Backup
domain supply
current
Backup SRAM ON, low-speed
oscillator and RTC ON 1.29 1.42 1.68 12 19
µA
Backup SRAM OFF, low-speed
oscillator and RTC ON 0.62 0.73 0.96 8 10
Backup SRAM ON, RTC OFF 0.79 0.81 0.86 9 16
Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 5 7
1. Guaranteed by characterization results, not tested in production.
DocID15818 Rev 12 85/179
STM32F20xxx Electrical characteristics
178
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 26. The MCU is placed
under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with one peripheral clocked on (with only the clock applied)
The code is running from Flash memory and the Flash memory access time is equal to
3 wait states at 120 MHz
Prefetch and Cache ON
When the peripherals are enabled, HCLK = 120MHz, fPCLK1 = fHCLK/4, and
fPCLK2 =f
HCLK/2
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 26. Peripheral current consumption
Peripheral(1) Typical consumption at 25 °C Unit
AHB1
GPIO A 0.45
mA
GPIO B 0.43
GPIO C 0.46
GPIO D 0.44
GPIO E 0.44
GPIO F 0.42
GPIO G 0.44
GPIO H 0.42
GPIO I 0.43
OTG_HS + ULPI 3.64
CRC 1.17
BKPSRAM 0.21
DMA1 2.76
DMA2 2.85
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
2.99
AHB2
OTG_FS 3.16
DCMI 0.60
AHB3 FSMC 1.74
Electrical characteristics STM32F20xxx
86/179 DocID15818 Rev 12
APB1
TIM2 0.61
mA
TIM3 0.49
TIM4 0.54
TIM5 0.62
TIM6 0.20
TIM7 0.20
TIM12 0.36
TIM13 0.28
TIM14 0.25
USART2 0.25
USART3 0.25
UART4 0.25
UART5 0.26
I2C1 0.25
I2C2 0.25
I2C3 0.25
SPI2 0.20/0.10
SPI3 0.18/0.09
CAN1 0.31
CAN2 0.30
DAC channel 1(2) 1.11
DAC channel 1(3) 1.11
PWR 0.15
WWDG 0.15
Table 26. Peripheral current consumption (continued)
Peripheral(1) Typical consumption at 25 °C Unit
DocID15818 Rev 12 87/179
STM32F20xxx Electrical characteristics
178
6.3.7 Wakeup time from low-power mode
The wakeup times given in Table 27 is measured on a wakeup phase with a 16 MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
APB2
SDIO 0.69
mA
TIM1 1.06
TIM8 1.03
TIM9 0.58
TIM10 0.37
TIM11 0.39
ADC1(4) 2.13
ADC2(4) 2.04
ADC3(4) 2.12
SPI1 1.20
USART1 0.38
USART6 0.37
1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.
2. EN1 bit is set in DAC_CR register.
3. EN2 bit is set in DAC_CR register.
4. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register.
Table 26. Peripheral current consumption (continued)
Peripheral(1) Typical consumption at 25 °C Unit
Table 27. Low-power mode wakeup timings
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep mode - 1 - µs
tWUSTOP(2)
Wakeup from Stop mode (regulator in Run mode) - 13 -
µs
Wakeup from Stop mode (regulator in low-power mode) - 17 40
Wakeup from Stop mode (regulator in low-power mode
and Flash memory in Deep power down mode) -110-
tWUSTDBY(2)(3) Wakeup from Standby mode 260 375 480 µs
1. Guaranteed by characterization results, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Electrical characteristics STM32F20xxx
88/179 DocID15818 Rev 12
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 28 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Low-speed external user clock generated from an external source
The characteristics given in Table 29 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 28. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1-26MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
Cin(HSE) OSC_IN input capacitance(1) -5-pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 29. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design, not tested in production.
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
DocID15818 Rev 12 89/179
STM32F20xxx Electrical characteristics
178
Figure 30. High-speed external clock source AC timing diagram
Figure 31. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 30. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
AI
/3#?).
%XTERNAL
34-&
CLOCKSOURCE
6,3%(
TF,3% T7,3%
),


4,3%
T
TR,3% T7,3%
F,3%?EXT
6,3%,
Electrical characteristics STM32F20xxx
90/179 DocID15818 Rev 12
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 31. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 30. HSE 4-26 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RFFeedback resistor - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
-449-
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
-532-
gmOscillator transconductance Startup 5 - - mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B287
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
DocID15818 Rev 12 91/179
STM32F20xxx Electrical characteristics
178
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 33. Typical application with a 32.768 kHz crystal
6.3.9 Internal clock source characteristics
The parameters given in Table 32 and Table 33 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - 18.4 - MΩ
IDD LSE current consumption - - 1 µA
gmOscillator Transconductance 2.8 - - µA/V
tSU(LSE)(2)
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
startup time VDD is stabilized - 2 - s
DL
26&B287
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Table 32. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2) --1%
Factory-
calibrated
TA = –40 to 105 °C –8 - 4.5 %
TA = –10 to 85 °C –4 - 4 %
TA = 25 °C –1 - 1 %
tsu(HSI)(3) HSI oscillator
startup time -2.24µs
IDD(HSI)
HSI oscillator
power consumption -6080µA
Electrical characteristics STM32F20xxx
92/179 DocID15818 Rev 12
Figure 34. ACCHSI versus temperature
Low-speed internal (LSI) RC oscillator
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
3. Guaranteed by design, not tested in production.
Table 33. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization results, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
-36
Ͳϴ
Ͳϲ
Ͳϰ
ͲϮ
Ϭ
Ϯ
ϰ
ϲ
Ͳϰϱ Ͳϯϱ ͲϮϱ Ͳϭϱ Ͳϱ ϱ ϭϱ Ϯϱ ϯϱ ϰϱ ϱϱ ϲϱ ϳϱ ϴϱ ϵϱ ϭϬϱ ϭϭϱ ϭϮϱ
E
ŽƌŵĂůŝnjĞĚĚĞǀŝĂƚŝŽŶ;й
Ϳ
ŵƉĞƌĂƚƵƌĞ;ΣͿ
ŵĂdž
ĂǀŐ
ŵŝŶ
DocID15818 Rev 12 93/179
STM32F20xxx Electrical characteristics
178
Figure 35. ACCLSI versus temperature
6.3.10 PLL characteristics
The parameters given in Table 34 and Table 35 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
-36










.ORMALIZEDDEVIATI ON

4EMPERAT URE#
MAX
AVG
MIN
Table 34. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) 0.95
(2) 12.10
(2) MHz
fPLL_OUT PLL multiplier output clock 24 - 120 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock -- 48MHz
fVCO_OUT PLL VCO output 192 - 432 MHz
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Electrical characteristics STM32F20xxx
94/179 DocID15818 Rev 12
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples - 330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results, not tested in production.
Table 34. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 35. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 12.10
(2) MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz
fVCO_OUT PLLI2S VCO output 192 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
DocID15818 Rev 12 95/179
STM32F20xxx Electrical characteristics
178
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N=432, R=5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Guaranteed by characterization results, not tested in production.
Table 35. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F20xxx
96/179 DocID15818 Rev 12
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 42: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation
1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 36. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - 2151-
1. Guaranteed by design, not tested in production.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2,0002%(peak)==
DocID15818 Rev 12 97/179
STM32F20xxx Electrical characteristics
178
Figure 36 and Figure 37 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 36. PLL output clock waveforms in center spread mode
Figure 37. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
XMD
AI
Electrical characteristics STM32F20xxx
98/179 DocID15818 Rev 12
Table 37. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode
VDD = 1.8 V -5-
mA
Write / Erase 16-bit mode
VDD = 2.1 V -8-
Write / Erase 32-bit mode
VDD = 3.3 V -12-
Table 38. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization results, not tested in production.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.8 - 3.6 V
DocID15818 Rev 12 99/179
STM32F20xxx Electrical characteristics
178
Table 40. Flash memory endurance and data retention
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
Table 39. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage 2.7 - 3.6 V
VPP VPP voltage range 7 - 9 V
IPP
Minimum current sunk on
the VPP pin 10 - - mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied --1hour
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Electrical characteristics STM32F20xxx
100/179 DocID15818 Rev 12
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 41. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 120 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 120 MHz, conforms
to IEC 61000-4-2
4A
DocID15818 Rev 12 101/179
STM32F20xxx Electrical characteristics
178
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 42. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/120 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled, peripheral clock disabled
0.1 to 30 MHz
25 dBµV30 to 130 MHz
130 MHz to 1GHz
SAE EMI Level 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled, PLL spread spectrum
enabled, peripheral clock disabled
0.1 to 30 MHz 28
dBµV30 to 130 MHz 26
130 MHz to 1GHz 22
SAE EMI level 4 -
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114 2 2000(2)
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to JESD22-C101 II 500
1. Guaranteed by characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
Electrical characteristics STM32F20xxx
102/179 DocID15818 Rev 12
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 45.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 45. I/O current injection susceptibility(1)
1. NA stands for “not applicable”.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin –0 NA
mA
Injected current on NRST pin –0 NA
Injected current on TTa pins: PA4 and PA5 –0 +5
Injected current on all FT pins –5 NA
DocID15818 Rev 12 103/179
STM32F20xxx Electrical characteristics
178
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the conditions summarized in Table 14: General operating conditions.
All I/Os are CMOS and TTL compliant.
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O input low
level voltage 1.7 VVDD3.6 V - -
0.35VDD–0.04(1)
V
0.3VDD(2)
BOOT0 I/O input low level voltage
1.75 VVDD 3.6 V,
–40 °CTA105 °C --
0.1VDD+0.1(1)
1.7 VVDD 3.6 V,
CTA105 °C --
VIH
FT, TTa and NRST I/O input high
level voltage(5) 1.7 VVDD3.6 V
0.45VDD+0.3
(1) --
V
0.7VDD(2)
BOOT0 I/O input high level
voltage
1.75 VVDD 3.6 V,
–40 °CTA105 °C 0.17VDD+0.7
(1) --
1.7 VVDD 3.6 V,
CTA105 °C
VHYS
FT, TTa and NRST I/O input
hysteresis 1.7 VVDD3.6 V 0.45VDD+0.3
(1) --
V
BOOT0 I/O input hysteresis
1.75 VVDD 3.6 V,
–40 °CTA105 °C
10%VDDIO(1)
(3) --
1.7 VVDD 3.6 V,
CTA105 °C 100(1) --
Ilkg
I/O input leakage current (4) VSS VIN VDD -- ±1
µA
I/O FT input leakage current (5) VIN = 5V - - 3
Electrical characteristics STM32F20xxx
104/179 DocID15818 Rev 12
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 38.
RPU
Weak pull-up
equivalent
resistor(6)
All pins except
for PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VSS 30 40 50
kΩ
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
-71014
RPD
Weak pull-down
equivalent
resistor(7)
All pins except
for PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VDD 30 40 50
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
-71014
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design, not tested in production.
2. Guaranteed by tests in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 45: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
Table 46. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID15818 Rev 12 105/179
STM32F20xxx Electrical characteristics
178
Figure 38. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 1 2).
Output voltage levels
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14 . All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
Electrical characteristics STM32F20xxx
106/179 DocID15818 Rev 12
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 39 and
Table 48 , respectively.
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 47. Output voltage characteristics(1)
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
Symbol Parameter Conditions Min Max Unit
VOL(2)
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS ports
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
VOL (2) Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL ports
IIO =+ 8mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4 -
VOL(2)(4)
4. Guaranteed by characterization results, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3 -
VOL(2)(4) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
Table 48. I/O AC characteristics(1)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD > 2.70 V - - 4
MHz
CL = 50 pF, VDD > 1.8 V - - 2
CL = 10 pF, VDD > 2.70 V - - 8
CL = 10 pF, VDD > 1.8 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.8 V to
3.6 V --100ns
DocID15818 Rev 12 107/179
STM32F20xxx Electrical characteristics
178
01
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD > 2.70 V - - 25
MHz
CL = 50 pF, VDD > 1.8 V - - 12.5
CL = 10 pF, VDD > 2.70 V - - 50(3)
CL = 10 pF, VDD > 1.8 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD >2.7 V - - 10
ns
CL = 50 pF, VDD > 1.8 V - - 20
CL = 10 pF, VDD > 2.70 V - - 6
CL = 10 pF, VDD > 1.8 V - - 10
10
fmax(IO)out Maximum frequency(2)
CL = 40 pF, VDD > 2.70 V - - 25
MHz
CL = 40 pF, VDD > 1.8 V - - 20
CL = 10 pF, VDD > 2.70 V - - 100(3)
CL = 10 pF, VDD > 1.8 V - - 50(3)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD > 2.70 V - - 6
ns
CL = 40 pF, VDD > 1.8 V - - 10
CL = 10 pF, VDD > 2.70 V - 4
CL = 10 pF, VDD > 1.8 V - 6
11
fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD > 2.70 V - - 100(3)
MHz
CL = 30 pF, VDD > 1.8 V - - 50(3)
CL = 10 pF, VDD > 2.70 V - - 120(3)
CL = 10 pF, VDD > 1.8 V - - 100(3)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD > 2.70 V - - 4
ns
CL = 30 pF, VDD > 1.8 V - - 6
CL = 10 pF, VDD > 2.70 V - - 2.5
CL = 10 pF, VDD > 1.8 V - - 4
-t
EXTIpw
Pulse width of external
signals detected by the EXTI
controller
10 - - ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
2. The maximum frequency is defined in Figure 39.
3. For maximum frequencies above 50 MHz and VDD above 2.4 V, the compensation cell should be used.
Table 48. I/O AC characteristics(1) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F20xxx
108/179 DocID15818 Rev 12
Figure 39. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 49).
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Figure 40. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Table 49. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design, not tested in production.
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
DocID15818 Rev 12 109/179
STM32F20xxx Electrical characteristics
178
Table 49. Otherwise the reset is not taken into account by the device.
6.3.18 TIM timer characteristics
The parameters given in Table 50 and Table 51 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 50. Characteristics of TIMx connected to the APB1 domain(1)
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
60 MHz
1-
tTIMxCLK
16.7 - ns
AHB/APB1
prescaler = 1,
fTIMxCLK = 30 MHz
1-
tTIMxCLK
33.3 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 60 MHz
APB1= 30 MHz
0fTIMxCLK/2 MHz
030MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
0.0167 1092 µs
32-bit counter clock period
when internal clock is
selected
1-
tTIMxCLK
0.0167 71582788 µs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 71.6 s
Electrical characteristics STM32F20xxx
110/179 DocID15818 Rev 12
6.3.19 Communications interfaces
I2C interface characteristics
STM32F205xx and STM32F207xx I2C interface meets the requirements of the standard I2C
communication protocol with the following restrictions: the I/O pins SDA and SCL are
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 52. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 51. Characteristics of TIMx connected to the APB2 domain(1)
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
120 MHz
1-
tTIMxCLK
8.3 - ns
AHB/APB2
prescaler = 1,
fTIMxCLK = 60 MHz
1-
tTIMxCLK
16.7 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 120 MHz
APB2 = 60 MHz
0fTIMxCLK/2 MHz
060MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
0.0083 546 µs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 35.79 s
DocID15818 Rev 12 111/179
STM32F20xxx Electrical characteristics
178
Table 52. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time - 3450(3) -900
(3)
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
tSP
Pulse width of the spikes
that are suppressed by the
analog filter
050
(4)
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
050ns
Electrical characteristics STM32F20xxx
112/179 DocID15818 Rev 12
Figure 41. I2C bus AC waveforms and measurement circuit
1. RS= series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
DLF
53
,ð&EXV
s''B,&
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
s''B,&
5356
56
67$57
67$57
6'$
6&/
DocID15818 Rev 12 113/179
STM32F20xxx Electrical characteristics
178
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 54 for SPI or in Table 55 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14.
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 54. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
SPI1 master/slave mode - 30
MHz
SPI2/SPI3 master/slave mode - 15
tr(SCL)
tf(SCL)
SPI clock rise and fall
time
Capacitive load: C = 30 pF,
fPCLK = 30 MHz - 8ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS)(1)
1. Guaranteed by characterization results, not tested in production.
NSS setup time Slave mode 4tPCLK -
ns
th(NSS)(1) NSS hold time Slave mode 2tPCLK -
tw(SCLH)(1)
tw(SCLL)(1) SCK high and low time Master mode, fPCLK = 30 MHz,
presc = 2 tPCLK-3t
PCLK+3
tsu(MI) (1)
tsu(SI)(1) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI) (1)
th(SI)(1) Data input hold time
Master mode 5 -
Slave mode 4 -
ta(SO)(1)(2)
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access
time Slave mode, fPCLK = 30 MHz 0 3tPCLK
tdis(SO)(1)(3)
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable
time Slave mode 2 10
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25
tv(MO)(1) Data output valid time Master mode (after enable edge) - 5
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 15 -
th(MO)(1) Master mode (after enable edge) 2 -
Electrical characteristics STM32F20xxx
114/179 DocID15818 Rev 12
Figure 42. SPI timing diagram - slave mode and CPHA = 0
Figure 43. SPI timing diagram - slave mode and CPHA = 1
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT P UT
CPHA= 0
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT P UT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
DocID15818 Rev 12 115/179
STM32F20xxx Electrical characteristics
178
Figure 44. SPI timing diagram - master mode
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
Electrical characteristics STM32F20xxx
116/179 DocID15818 Rev 12
Table 55. I2S characteristics
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master, 16-bit data,
audio frequency = 48 kHz, main
clock disabled
1.23 1.24
MHz
Slave 0 64FS(1)
tr(CK)
tf(CK)
I2S clock rise and fall time capacitive load CL= 50 pF - (2)
ns
tv(WS) (3) WS valid time Master 0.3 -
th(WS) (3) WS hold time Master 0 -
tsu(WS) (3) WS setup time Slave 3 -
th(WS) (3) WS hold time Slave 0 -
tw(CKH) (3)
tw(CKL) (3) CK high and low time Master fPCLK= 30 MHz 396 -
tsu(SD_MR) (3)
tsu(SD_SR) (3) Data input setup time Master receiver
Slave receiver
45
0-
th(SD_MR)(3)(4)
th(SD_SR) (3)(4) Data input hold time Master receiver: fPCLK= 30 MHz,
Slave receiver: fPCLK= 30 MHz
13
0-
tv(SD_ST) (3)(4) Data output valid time Slave transmitter (after enable
edge) - 30
th(SD_ST) (3) Data output hold time Slave transmitter (after enable
edge) 10 -
tv(SD_MT) (3)(4) Data output valid time Master transmitter (after enable
edge) - 6
th(SD_MT) (3) Data output hold time Master transmitter (after enable
edge) 0-
1. FS is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. fCK
values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of
(I2SDIV+ODD)/(2*I2SDIV+ODD) and FS maximum values for each mode/condition.
2. Refer to Table 48: I/O AC characteristics.
3. Guaranteed by design, not tested in production.
4. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
DocID15818 Rev 12 117/179
STM32F20xxx Electrical characteristics
178
Figure 45. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 46. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS)tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive(2)
LSB transmit(2)
Electrical characteristics STM32F20xxx
118/179 DocID15818 Rev 12
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both
the USB OTG HS and USB OTG FS controllers.
Table 56. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 µs
Table 57. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2)
2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
DocID15818 Rev 12 119/179
STM32F20xxx Electrical characteristics
178
Figure 47. USB OTG FS timings: definition of data signal rise and fall time
USB HS characteristics
Table 59 shows the USB HS operating voltage.
Table 58. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
Table 59. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 2.7 3.6 V
Table 60. Clock timing parameters
Parameter(1)
1. Guaranteed by design, not tested in production.
Symbol Min Nominal Max Unit
Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz
Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %
Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY --1.4ms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV --5.6
ms
Host TSTART_HOST ---
PHY preparation time after the first transition
of the input clock TPREP ---µs
ai14137
tf
Differen tial
Data L ines
VSS
V
CR S
tr
Crossover
points
Electrical characteristics STM32F20xxx
120/179 DocID15818 Rev 12
Figure 48. ULPI timing diagram
Ethernet characteristics
Table 62 shows the Ethernet operating voltage.
Table 63 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 49 shows the corresponding timing diagram.
Table 61. ULPI timing
Symbol Parameter
Value(1)
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Unit
Min. Max.
tSC
Control in (ULPI_DIR) setup time - 2.0
ns
Control in (ULPI_NXT) setup time - 1.5
tHC Control in (ULPI_DIR, ULPI_NXT) hold time 0 -
tSD Data in setup time - 2.0
tHD Data in hold time 0 -
tDC Control out (ULPI_STP) setup time and hold time - 9.2
tDD Data out available from clock rising edge - 10.7
Table 62. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
DATA)N
BIT
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$$
T$#
T($
T3$
T(#
T3#
AIC
T$#
DocID15818 Rev 12 121/179
STM32F20xxx Electrical characteristics
178
Figure 49. Ethernet SMI timing diagram
Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the
corresponding timing diagram.
Figure 50. Ethernet RMII timing diagram
Table 63. Dynamics characteristics: Ethernet MAC signals for SMI
Symbol Rating Min Typ Max Unit
tMDC MDC cycle time (2.38 MHz) 411 420 425 ns
td(MDIO) MDIO write data valid time 6 10 13 ns
tsu(MDIO) Read data setup time 12 - - ns
th(MDIO) Read data hold time 0 - - ns
Table 64. Dynamics characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 1 - -
ns
tih(RXD) Receive data hold time 1.5 - -
tsu(CRS) Carrier sense set-up time 0 - -
tih(CRS) Carrier sense hold time 2 - -
td(TXEN) Transmit enable valid delay time 9 11 13
td(TXD) Transmit data valid delay time 9 11.5 14
%4(?-$#
%4(?-$)//
%4(?-$)/)
T-$#
TD-$)/
TSU-$)/ TH-$)/
AID
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
t
d(TXEN)
t
d(TXD)
t
su(RXD)
t
su(CRS)
t
ih(RXD)
t
ih(CRS)
ai15667
Electrical characteristics STM32F20xxx
122/179 DocID15818 Rev 12
Table 65 gives the list of Ethernet MAC signals for MII and Figure 50 shows the
corresponding timing diagram.
Figure 51. Ethernet MII timing diagram
CAN (controller area network) interface
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
Table 65. Dynamics characteristics: Ethernet MAC signals for MII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 7.5 - - ns
tih(RXD) Receive data hold time 1 - - ns
tsu(DV) Data valid setup time 4 - - ns
tih(DV) Data valid hold time 0 - - ns
tsu(ER) Error setup time 3.5 - - ns
tih(ER) Error hold time 0 - - ns
td(TXEN) Transmit enable valid delay time - 11 14 ns
td(TXD) Transmit data valid delay time - 11 14 ns
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
DocID15818 Rev 12 123/179
STM32F20xxx Electrical characteristics
178
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 66. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply 1.8(1) -3.6V
VREF+ Positive reference voltage 1.8(1)(2) -V
DDA V
fADC ADC clock frequency VDDA = 1.8(1) to 2.4 V 0.6 - 15 MHz
VDDA = 2.4 to 3.6 V 0.6 - 30 MHz
fTRIG(3) External trigger frequency
fADC = 30 MHz with
12-bit resolution - - 1764 kHz
- - 17 1/fADC
VAIN Conversion voltage range(4) 0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(3) External input impedance See Equation 1 for
details --50kΩ
RADC(3)(5) Sampling switch resistance 1.5 - 6 kΩ
CADC(3) Internal sample and hold
capacitor -4-pF
tlat(3) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
--3
(6) 1/fADC
tlatr(3) Regular trigger conversion latency fADC = 30 MHz - - 0.067 µs
--2
(6) 1/fADC
tS(3) Sampling time fADC = 30 MHz 0.100 - 16 µs
3-4801/f
ADC
tSTAB(3) Power-up time - 2 3 µs
tCONV(3) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.5 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.3 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
Electrical characteristics STM32F20xxx
124/179 DocID15818 Rev 12
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
fS(3) Sampling rate
(fADC = 30 MHz)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
--3.75Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(3) ADC VREF DC current
consumption in conversion mode -300500µA
IVDDA(3) ADC VDDA DC current
consumption in conversion mode -1.61.8mA
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. Guaranteed by characterization results, not tested in production.
4. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
5. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
6. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Table 66. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 67. ADC accuracy (1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization results, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when
the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see
Section 3.16).
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0,5()
fADC CADC 2N2+
()ln××
-------------------------------------------------------------- RADC
=
DocID15818 Rev 12 125/179
STM32F20xxx Electrical characteristics
178
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 52. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 53. Typical connection diagram using the ADC
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F20xxx
126/179 DocID15818 Rev 12
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 54 or Figure 55,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 54. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages
except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and
VSSA.
Figure 55. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages
except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and
VSSA.
VREF+
STM32F
VDDA
VSSA/V REF-
1 µF // 10 nF
1 µF // 10 nF
ai17535
(See note 1)
(See note 1)
VREF+/VDDA
STM32F
1 µF // 10 nF
VREF–/VSSA
ai17536
(See note 1)
(See note 1)
DocID15818 Rev 12 127/179
STM32F20xxx Electrical characteristics
178
6.3.21 DAC electrical characteristics
Table 68. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.8(1) -3.6 V
VREF+ Reference supply voltage 1.8(1) -3.6VV
REF+ VDDA
VSSA Ground 0 - 0 V
RLOAD(2) Resistive load with buffer ON 5 - - kΩ
RO(2) Impedance output with buffer
OFF -- 15 kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --V
DDA – 0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --V
REF+ – 1LSB V
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
- 170 240
µA
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-50 75
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
- 280 380 µA With no load, middle code (0x800)
on the inputs
- 475 625 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
-- ±0.5 LSB
Given for the DAC in 10-bit
configuration.
-- ±2 LSB
Given for the DAC in 12-bit
configuration.
Electrical characteristics STM32F20xxx
128/179 DocID15818 Rev 12
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-- ±1 LSB
Given for the DAC in 10-bit
configuration.
-- ±4 LSB
Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-- ±10 mV
-- ±3 LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-- ±12LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6 µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- - dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1 MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
- 6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. Guaranteed by design, not tested in production.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results, not tested in production.
Table 68. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
DocID15818 Rev 12 129/179
STM32F20xxx Electrical characteristics
178
Figure 56. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
6.3.22 Temperature sensor characteristics
6.3.23 VBAT monitoring characteristics
R
L
C
L
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V2
Table 69. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by characterization results, not tested in production.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 mV/°C
V25(1) Voltage at 25 °C - 0.76 V
tSTART(2)
2. Guaranteed by design, not tested in production.
Startup time - 6 10 µs
TS_temp(2)
ADC sampling time when reading the
temperature
1°C accuracy
10 - - µs
Table 70. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 2 -
Er(1)
1. Guaranteed by design, not tested in production.
Error on Q –1 - +1 %
TS_vbat(2)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the VBAT
1mV accuracy 5--µs
Electrical characteristics STM32F20xxx
130/179 DocID15818 Rev 12
6.3.24 Embedded reference voltage
The parameters given in Table 71 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
6.3.25 FSMC characteristics
Asynchronous waveforms and timings
Figure 57 through Figure 60 represent asynchronous waveforms and Table 72 through
Table 75 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 1
AddressHoldTime = 1
DataSetupTime = 1
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Table 71. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when
reading the internal reference
voltage
10 - - µs
VRERINT_s
(2)
2. Guaranteed by design, not tested in production.
Internal reference voltage
spread over the temperature
range
VDD = 3 V - 3 5 mV
TCoeff(2) Temperature coefficient - 30 50 ppm/°C
tSTART(2) Startup time - 6 10 µs
DocID15818 Rev 12 131/179
STM32F20xxx Electrical characteristics
178
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2THCLK– 0.5 2THCLK+0.5 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 2.5 ns
tw(NOE) FSMC_NOE low time 2THCLK- 1 2THCLK+ 0.5 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 4 ns
th(A_NOE) Address hold time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 0.5 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+ 2.5 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2.5 ns
tw(NADV) FSMC_NADV low time - THCLK– 0.5 ns
$ATA
&3-#?.%
&3-#?.",;=
&3-#?$;=
T
V",?.%
TH$ATA?.%
&3-#?./%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TSU$ATA?.%
TW.%
AIC
W./%
TTV./%?.% TH.%?./%
TH$ATA?./%
TH!?./%
TH",?./%
TSU$ATA?./%
&3-#?.!$6
TV.!$6?.%
TW.!$6
Electrical characteristics STM32F20xxx
132/179 DocID15818 Rev 12
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK– 0.5 THCLK+ 0.5 ns
tw(NWE) FSMC_NWE low time THCLK– 0.5 THCLK+ 3 ns
th(NE_NWE)
FSMC_NWE high to FSMC_NE high hold
time THCLK -ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK- 3 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE
high THCLK– 1 - ns
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+ 5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK+0.5 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK+ 1.5 ns
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY'DWDB1(
WZ1(
DL
)60&B1$'9
WY1$'9B1(
WZ1$'9
DocID15818 Rev 12 133/179
STM32F20xxx Electrical characteristics
178
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK-1 3THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK 2THCLK+0.5 ns
tw(NOE) FSMC_NOE low time THCLK-1 THCLK+1 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 2 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2.5 ns
tw(NADV) FSMC_NADV low time THCLK– 1.5 THCLK ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK -ns
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1 ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 2 - ns
.",
$ATA
&3-#?.",;=
&3-#?
!$;=
T
V",?.%
TH$ATA?.%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TV!?.%
AIB
!DDRESS
&3-#?.!$6
TV.!$6?.%
TW.!$6
TSU$ATA?.%
T
H!$?.!$6
&3-#?.%
&3-#?./%
TW.%
TW./%
TV./%?.% TH.%?./%
TH!?./%
TH",?./%
TSU$ATA?./% TH$ATA?./%
Electrical characteristics STM32F20xxx
134/179 DocID15818 Rev 12
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+ 3 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
DocID15818 Rev 12 135/179
STM32F20xxx Electrical characteristics
178
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 75. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4THCLK-1 4THCLK+1 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK- 1 THCLK ns
tw(NWE) FSMC_NWE low tim e 2THCLK 2THCLK+1 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK- 1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 2 ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK– 0.5 - ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK- 1 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK+2 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK– 0.5 - ns
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_AD[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:16]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(A_NE)
tw(NE)
ai14891B
Address
FSMC_NADV
tv(NADV_NE)
tw(NADV)
tv(Data_NADV)
t
h(AD_NADV)
Electrical characteristics STM32F20xxx
136/179 DocID15818 Rev 12
Synchronous waveforms and timings
Figure 61 through Figure 64 represent synchronous waveforms and Table 77 through
Table 79 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period.
Figure 61. Synchronous multiplexed NOR/PSRAM read timings
)60&B&/.
)60&B1([
)60&B1$'9
)60&B$>@
)60&B12(
)60&B$'>@ $'>@ ' '
)60&B1:$,7
:$,7&)* E:$,732/E
)60&B1:$,7
:$,7&)* E:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/./1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/./$,9
WG&/.+12(/ WG&/./12(+
WG&/./$'9
WG&/./$',9
WVX$'9&/.+
WK&/.+$'9
WVX$'9&/.+ WK&/.+$'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
DLK
DocID15818 Rev 12 137/179
STM32F20xxx Electrical characteristics
178
Table 76. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1.5 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2.5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK
high 5 -ns
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
Electrical characteristics STM32F20xxx
138/179 DocID15818 Rev 12
Figure 62. Synchronous multiplexed PSRAM write timings
Table 77. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK- 1 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 7 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 2 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?.7%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
AIG
TD#,+,$ATA
&3-#?.",
DocID15818 Rev 12 139/179
STM32F20xxx Electrical characteristics
178
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings
Table 78. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2.5 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 4 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 3 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 8 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?./%
&3-#?$;=
$ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+(./%, TD#,+,./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIG
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
$
Electrical characteristics STM32F20xxx
140/179 DocID15818 Rev 12
Figure 64. Synchronous non-multiplexed PSRAM write timings
Table 79. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK- 1 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-
NADVL)
FSMC_CLK low to FSMC_NADV low - 5 ns
td(CLKL-
NADVH)
FSMC_CLK low to FSMC_NADV high 6 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 2 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?.7%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&3-#?.",
TD#,+,.",(
DocID15818 Rev 12 141/179
STM32F20xxx Electrical characteristics
178
PC Card/CompactFlash controller waveforms and timings
Figure 65 through Figure 70 represent synchronous waveforms together with Table 80 and
Table 81 provides the corresponding timings. The results shown in this table are obtained
with the following FSMC configuration:
COM.FSMC_SetupTime = 0x04;
COM.FSMC_WaitSetupTime = 0x07;
COM.FSMC_HoldSetupTime = 0x04;
COM.FSMC_HiZSetupTime = 0x00;
ATT.FSMC_SetupTime = 0x04;
ATT.FSMC_WaitSetupTime = 0x07;
ATT.FSMC_HoldSetupTime = 0x04;
ATT.FSMC_HiZSetupTime = 0x00;
IO.FSMC_SetupTime = 0x04;
IO.FSMC_WaitSetupTime = 0x07;
IO.FSMC_HoldSetupTime = 0x04;
IO.FSMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
Figure 65. PC Card/CompactFlash controller waveforms for common memory read
access
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
)60&B1:(
WZ12(
)60&B1
2(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1&(B12(
WVX'12( WK12('
WY1&([$
WG15(*1&([
WG1,25'1&([
WK1&([$,
WK1&([15(*
WK1&([1,25'
WK1&([
1,2:5
DLE
Electrical characteristics STM32F20xxx
142/179 DocID15818 Rev 12
Figure 66. PC Card/CompactFlash controller waveforms for common memory write
access
WG1&(B1:( WZ1:(
WK1:('
WY1&(B$
WG15(*1&(B
WG1,25'1&(B
WK1&(B$,
0(0[+,= 
WY1:('
WK1&(B15(*
WK1&(B1,25'
WK1&(B1,2:5
DLE
)60&B1:(
)60&B1
2(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1:(1&(B
WG'1:(
)60&B1&(B +LJK
DocID15818 Rev 12 143/179
STM32F20xxx Electrical characteristics
178
Figure 67. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
WG1&(B12( WZ12(
WVX'12( WK12('
WY1&(B$ WK1&(B$,
WG15(*1&(B WK1&(B15(*
DLE
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG12(1&(B
+LJK
Electrical characteristics STM32F20xxx
144/179 DocID15818 Rev 12
Figure 68. PC Card/CompactFlash controller waveforms for attribute memory write
access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 69. PC Card/CompactFlash controller waveforms for I/O space read access
WZ1:(
WY1&(B$
WG15(*1&(B
WK1&(B$,
WK1&(B15(*
WY1:('
DLE
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1:(1&(B
+LJK
WG1&(B1:(
WG1,25'1&(B WZ1,25'
WVX'1,25' WG1,25''
WY1&([$ WK1&(B$,
DL%
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
DocID15818 Rev 12 145/179
STM32F20xxx Electrical characteristics
178
Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access
WG1&(B1,2:5 WZ1,2:5
WY1&([$ WK1&(B$,
WK1,2:5'
$77[+,= 
WY1,2:5'
DLF
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
Table 80. Switching characteristics for PC Card/CF read and write cycles in
attribute/common space(1)(2)
Symbol Parameter Min Max Unit
tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns
th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+ 4 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK ns
tw(NOE) FSMC_NOE low width 8THCLK– 0.5 8THCLK+ 1 ns
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+ 2.5 - ns
tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4 - ns
th (N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 2 - ns
tw(NWE) FSMC_NWE low width 8THCLK- 1 8THCLK+ 4 ns
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK+ 1.5 ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5HCLK+ 1 ns
tv (NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8 THCLK -ns
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK -ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Electrical characteristics STM32F20xxx
146/179 DocID15818 Rev 12
NAND controller waveforms and timings
Figure 71 through Figure 74 represent synchronous waveforms, together with Table 82 and
Table 83 provides the corresponding timings. The results shown in this table are obtained
with the following FSMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FSMC_WaitSetupTime = 0x03;
COM.FSMC_HoldSetupTime = 0x02;
COM.FSMC_HiZSetupTime = 0x01;
ATT.FSMC_SetupTime = 0x01;
ATT.FSMC_WaitSetupTime = 0x03;
ATT.FSMC_HoldSetupTime = 0x02;
ATT.FSMC_HiZSetupTime = 0x01;
Bank = FSMC_Bank_NAND;
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
ECC = FSMC_ECC_Enable;
ECCPageSize = FSMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FSMC_NIOWR low width 8THCLK - 0.5 - ns
tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK- 1 ns
th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK- 3 - ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 1.5 ns
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK -ns
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 1 ns
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 0.5 - ns
tw(NIORD) FSMC_NIORD low width 8THCLK+ 1 - ns
tsu(D-NIORD)
FSMC_D[15:0] valid before FSMC_NIORD
high 9.5 ns
td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DocID15818 Rev 12 147/179
STM32F20xxx Electrical characteristics
178
Figure 71. NAND controller waveforms for read access
Figure 72. NAND controller waveforms for write access
&3-#?.7%
&3-#?./%.2%
&3-#?$;=
TSU$./% TH./%$
AIC
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
TH.7%$
TV.7%$
AIC
&3-#?.7%
&3-#?./%.2%
&3-#?$;=
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%.7% TH.7%!,%
Electrical characteristics STM32F20xxx
148/179 DocID15818 Rev 12
Figure 73. NAND controller waveforms for common memory read access
Figure 74. NAND controller waveforms for common memory write access
Table 82. Switching characteristics for NAND Flash read cycles(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(N0E) FSMC_NOE low width 4THCLK- 1 4THCLK+ 2 ns
tsu(D-NOE)
FSMC_D[15-0] valid data before FSMC_NOE
high 9-ns
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 3 - ns
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK+ 2 - ns
)60&B1:(
)60&B1
2(
)60&B'>@
W
Z12(
W
VX'12(
W
K12('
DLF
$/()60&B$
&/()60&B$
)60&B1&([
W
G$/(12(
W
K12($/(
TW.7%
TH.7%$
TV.7%$
AIC
&3-#?.7%
&3-#?.
/%
&3-#?$;=
TD$.7%
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
DocID15818 Rev 12 149/179
STM32F20xxx Electrical characteristics
178
6.3.26 Camera interface (DCMI) timing specifications
6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 85 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 14.
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 75. SDIO high-speed mode
Table 83. Switching characteristics for NAND Flash write cycles(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(NWE) FSMC_NWE low width 4THCLK- 1 4THCLK+ 3 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns
th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK -ns
td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK -ns
td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK+ 2 ns
th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK- 2 - ns
Table 84. DCMI characteristics
Symbol Parameter Conditions Min Max
-Frequency ratio
DCMI_PIXCLK/fHCLK
DCMI_PIXCLK= 48 MHz 0.4
T7#+(
#+
$#-$
OUTPUT
$#-$
INPUT
T#
T7#+,
T/6 T/(
T)35 T)(
TFTR
AI
Electrical characteristics STM32F20xxx
150/179 DocID15818 Rev 12
Figure 76. SD default mode
6.3.28 RTC characteristics
Table 85. SD / MMC characteristics
Symbol Parameter Conditions Min Max Unit
fPP Clock frequency in data transfer
mode CL 30 pF 0 48 MHz
- SDIO_CK/fPCLK2 frequency ratio - - 8/3 -
tW(CKL) Clock low time, fPP = 16 MHz CL 30 pF 32
ns
tW(CKH) Clock high time, fPP = 16 MHz CL 30 pF 31
trClock rise time CL 30 pF 3.5
tfClock fall time CL 30 pF 5
CMD, D inputs (referenced to CK)
tISU Input setup time CL 30 pF 2
ns
tIH Input hold time CL 30 pF 0
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time CL 30 pF 6
ns
tOH Output hold time CL 30 pF 0.3
CMD, D outputs (referenced to CK) in SD default mode(1)
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
tOVD Output valid default time CL 30 pF 7
ns
tOHD Output hold default time CL 30 pF 0.5
AI
#+
$#-$
OUTPUT
T/6$ T/($
Table 86. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
DocID15818 Rev 12 151/179
STM32F20xxx Package characteristics
178
7 Package characteristics
7.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1.1 LQFP64, 10 x 10 mm 64 pin low-profile quad flat package
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
1. Drawing is not to scale.
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
Package characteristics STM32F20xxx
152/179 DocID15818 Rev 12
Figure 78. Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
c 0.090 - 0.200 0.0035 - 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3937 0.3937 0.4016
D3 - 7.500 - - 0.2953 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3937 0.3937 0.4016
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
DocID15818 Rev 12 153/179
STM32F20xxx Package characteristics
178
7.1.2 WLCSP64+2 - 0.400 mm pitch wafer level chip size package
Figure 79. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline
1. Drawing is not to scale.
$);B0(B9
%XPSVLGH6LGHYLHZ
'HWDLO$
:DIHUEDFNVLGH
$EDOOORFDWLRQ
$
'HWDLO$
URWDWHGE\&
HHH
'
6HDWLQJSODQH
$
$
E
(
H
H
H
*
)
H
$
Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.540 0.570 0.600 0.0213 0.0224 0.0236
A1 - 0.190 - - 0.0075 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0010 -
b 0.240 0.270 0.300 0.0094 0.0106 0.0118
D 3.604 3.639 3.674 0.1419 0.1433 0.1446
E 3.936 3.971 4.006 0.1550 0.1563 0.1577
e - 0.400 - - 0.0157 -
e1 - 3.200 - - 0.1260 -
e2 - 3.200 - - 0.1260 -
Package characteristics STM32F20xxx
154/179 DocID15818 Rev 12
7.1.3 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package
Figure 80. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
F - 0.220 - - 0.0087 -
G - 0.386 - - 0.0152 -
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
DocID15818 Rev 12 155/179
STM32F20xxx Package characteristics
178
Table 89. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F20xxx
156/179 DocID15818 Rev 12
Figure 81. Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Device marking
Figure 82. LQFP100 marking (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
 
 

 
 




AI
06Y9
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
670)
9)7;
<::
2SWLRQDOJDWHPDUN
DocID15818 Rev 12 157/179
STM32F20xxx Package characteristics
178
7.1.4 LQFP144, 20 x 20 mm 144-pin low-profile quad flat package
Figure 83. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

!?-%?6
!
!
!
,
,
C
B
!
Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
Package characteristics STM32F20xxx
158/179 DocID15818 Rev 12
Figure 84. Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
AIC














DocID15818 Rev 12 159/179
STM32F20xxx Package characteristics
178
Device marking
Figure 85. LQFP144 marking (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
'DWHFRGH
3LQLGHQWLILHU
670)=*7
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
2SWLRQDOJDWHPDUN
Package characteristics STM32F20xxx
160/179 DocID15818 Rev 12
7.1.5 LQFP176, 24 × 24 176-pin low profile quad flat package
Figure 86. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline
1. Drawing is not to scale.
Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
E 23.900 - 24.100 0.9409 - 0.9488
4?-%?6
!
!
E
%(%
$
($
:$
:%
B
MM
GAUGEPLANE
! ,
,
K
C
)$%.4)&)#!4)/.
0).
3EATINGPLANE
#
!
DocID15818 Rev 12 161/179
STM32F20xxx Package characteristics
178
e - 0.500 - - 0.0197 -
HD 25.900 - 26.100 1.0197 - 1.0276
HE 25.900 26.100 1.0197 1.0276
L(2) 0.450 0.750 0.0177 0.0295
L1 1.000 0.0394
ZD 1.250 0.0492
ZE 1.250 0.0492
k0°7°0°7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Package characteristics STM32F20xxx
162/179 DocID15818 Rev 12
Figure 87. LQFP176 recommended footprint
1. Dimensions are expressed in millimeters.
4?&0?6






 







DocID15818 Rev 12 163/179
STM32F20xxx Package characteristics
178
7.1.6 UFBGA176+25 10 × 10 mm ultra thin fine pitch ball grid array
Figure 88. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline
1. Drawing is not to scale.
$(B0(B9
6HDWLQJSODQH
$ &GGG
$ $
H)
)
H
5
$

%277209,(:
(
'
7239,(:
EEDOOV
%
$
%
HHH 0
III0
&
&
$
&
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
E
Table 92. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.3917 0.3937 0.3957
E 9.950 10.000 10.050 0.3917 0.3937 0.3957
e - 0.650 - - 0.0256 -
F 0.400 0.450 0.500 0.0157 0.0177 0.0197
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F20xxx
164/179 DocID15818 Rev 12
7.2 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 93. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP 64 - 10 × 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
WLCSP64+2 - 0.400 mm pitch 51
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 46
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch 39
DocID15818 Rev 12 165/179
STM32F20xxx Part numbering
178
8 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 94. Ordering information scheme
Example: STM32 F 205 R E T 6 Vxxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
205 = STM32F20x, connectivity
207= STM32F20x, connectivity, camera interface,
Ethernet
Pin count
R = 64 pins or 66 pins(1)
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
F = 768 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Software option
Internal code or Blank
Options
xxx = programmed parts
TR = tape and reel
1. The 66 pins is available on WLCSP package only.
Revision history STM32F20xxx
166/179 DocID15818 Rev 12
9 Revision history
Table 95. Document revision history
Date Revision Changes
05-Jun-2009 1 Initial release.
09-Oct-2009 2
Document status promoted from Target specification to Preliminary
data.
In Table 8: STM32F20x pin and ball definitions:
Note 4 updated
–V
DD_SA and VDD_3 pins inverted (Figure 12: STM32F20x LQFP100
pinout, Figure 13: STM32F20x LQFP144 pinout and Figure 14:
STM32F20x LQFP176 pinout corrected accordingly).
Section 7.1: Package mechanical data changed to LQFP with no
exposed pad.
01-Feb-2010 3
LFBGA144 package removed. STM32F203xx part numbers removed.
Part numbers with 128 and 256 Kbyte Flash densities added.
Encryption features removed.
PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-
RTC renamed to PI8-RTC_AF2.
13-Jul-2010 4
Renamed high-speed SRAM, system SRAM.
Removed combination: 128 KBytes Flash memory in LQFP144.
Added UFBGA176 package. Added note 1 related to LQFP176
package in Tab le 2 , Figure 14, and Table 94.
Added information on ART accelerator and audio PLL (PLLI2S).
Added Table 6: USART feature comparison.
Several updates on Table 8: STM32F20x pin and ball definitions and
Table 10: Alternate function mapping. ADC, DAC, oscillator, RTC_AF,
WKUP and VBUS signals removed from alternate functions and
moved to the “other functions” column in Table 8: STM32F20x pin and
ball definitions.
TRACESWO added in Figure 4: STM32F20x block diagram, Table 8:
STM32F20x pin and ball definitions, and Table 10: Alternate function
mapping.
XTAL oscillator frequency updated on cover page, in Figure 4:
STM32F20x block diagram and in Section 3.11: External
interrupt/event controller (EXTI).
Updated list of peripherals used for boot mode in Section 3.13: Boot
modes.
Added Regulator bypass mode in Section 3.16: Voltage regulator, and
Section 6.3.4: Operating conditions at power-up / power-down
(regulator OFF).
Updated Section 3.17: Real-time clock (RTC), backup SRAM and
backup registers.
Added Note Note: in Section 3.18: Low-power modes.
Added SPI TI protocol in Section 3.23: Serial peripheral interface
(SPI).
DocID15818 Rev 12 167/179
STM32F20xxx Revision history
178
13-Jul-2010 4
(continued)
Added USB OTG_FS features in Section 3.28: Universal serial bus on-
the-go full-speed (OTG_FS).
Updated VCAP_1 and VCAP_2 capacitor value to 2.2 µF in Figure 19:
Power supply scheme.
Removed DAC, modified ADC limitations, and updated I/O
compensation for 1.8 to 2.1 V range in Table 15: Limitations depending
on the operating power supply range.
Added VBORL, VBORM, VBORH and IRUSH in Table 19: Embedded reset
and power control block characteristics.
Removed table Typical current consumption in Sleep mode with Flash
memory in Deep power down mode. Merged typical and maximum
current consumption sections and added Table 21: Typical and
maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator disabled),
Table 20: Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory (ART
accelerator enabled) or RAM, Table 22: Typical and maximum current
consumption in Sleep mode, Table 23: Typical and maximum current
consumptions in Stop mode, Table 24: Typical and maximum current
consumptions in Standby mode, and Table 25: Typical and maximum
current consumptions in VBAT mode.
Update Table 34: Main PLL characteristics and added Section 6.3.11:
PLL spread spectrum clock generation (SSCG) characteristics.
Added Note 8 for CIO in Table 48: I/O AC characteristics.
Updated Section 6.3.18: TIM timer characteristics.
Added TNRST_OUT in Table 49: NRST pin characteristics.
Updated Table 52: I2C characteristics.
Removed 8-bit data in and data out waveforms from Figure 48: ULPI
timing diagram.
Removed note related to ADC calibration in Table 67. Section 6.3.20:
12-bit ADC characteristics: ADC characteristics tables merged into one
single table; tables ADC conversion time and ADC accuracy removed.
Updated Table 68: DAC characteristics.
Updated Section 6.3.22: Temperature sensor characteristics and
Section 6.3.23: VBAT monitoring characteristics.
Update Section 6.3.26: Camera interface (DCMI) timing specifications.
Added Section 6.3.27: SD/SDIO MMC card host interface (SDIO)
characteristics, and Section 6.3.28: RTC characteristics.
Added Section 7.2: Thermal characteristics. Updated Table 91:
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package
mechanical data and Figure 86: LQFP176 - Low profile quad flat
package 24 × 24 × 1.4 mm, package outline.
Changed tape and reel code to TX in Table 94: Ordering information
scheme.
Added Table 101: Main applications versus package for STM32F2xxx
microcontrollers. Updated figures in Appendix A.2: USB OTG full
speed (FS) interface solutions and A.3: USB OTG high speed (HS)
interface solutions. Updated Figure 94: Audio player solution using
PLL, PLLI2S, USB and 1 crystal and Figure 95: Audio PLL (PLLI2S)
providing accurate I2S clock.
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
168/179 DocID15818 Rev 12
25-Nov-2010 5
Update I/Os in Section : Features.
Added WLCSP64+2 package. Added note 1 related to LQFP176 on
cover page.
Added trademark for ART accelerator. Updated Section 3.2:
Adaptive real-time memory accelerator (ART Accelerator™).
Updated Figure 5: Multi-AHB matrix.
Added case of BOR inactivation using IRROFF on WLCSP devices in
Section 3.15: Power supply supervisor.
Reworked Section 3.16: Voltage regulator to clarify regulator off
modes. Renamed PDROFF, IRROFF in the whole document.
Added Section 3.19: VBAT operation.
Updated LIN and IrDA features for UART4/5 in Table 6: USART
feature comparison.
Table 8: STM32F20x pin and ball definitions: Modified VDD_3 pin, and
added note related to the FSMC_NL pin; renamed BYPASS-REG
REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5.
USART4 pins renamed UART4.
Changed VSS_SA to VSS, and VDD_SA pin reserved for future use.
Updated maximum HSE crystal frequency to 26 MHz.
Section 6.2: Absolute maximum ratings: Updated VIN minimum and
maximum values and note related to five-volt tolerant inputs in
Table 11: Voltage characteristics. Updated IINJ(PIN) maximum values
and related notes in Table 12: Current characteristics.
Updated VDDA minimum value in Table 14: General operating
conditions.
Added Note 2 and updated Maximum CPU frequency in Table 15:
Limitations depending on the operating power supply range, and
added Figure 21: Number of wait states versus fCPU and VDD range.
Added brownout level 1, 2, and 3 thresholds in Table 19: Embedded
reset and power control block characteristics.
Changed fOSC_IN maximum value in Table 30: HSE 4-26 MHz
oscillator characteristics.
Changed fPLL_IN maximum value in Table 34: Main PLL
characteristics, and updated jitter parameters in Table 35: PLLI2S
(audio PLL) characteristics.
Section 6.3.16: I/O port characteristics: updated VIH and VIL in
Table 48: I/O AC characteristics.
Added Note 1 below Table 47: Output voltage characteristics.
Updated RPD and RPU parameter description in Table 57: USB OTG
FS DC electrical characteristics.
Updated VREF+ minimum value in Table 66: ADC characteristics.
Updated Table 71: Embedded internal reference voltage.
Removed Ethernet and USB2 for 64-pin devices in Table 101: Mai n
applications versus package for STM32F2xxx microcontrollers.
Added A.2: USB OTG full speed (FS) interface solutions, removed
“OTG FS connection with external PHY” figure, updated Figure 87,
Figure 88, and Figure 90 to add STULPI01B.
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 169/179
STM32F20xxx Revision history
178
22-Apr-2011 6
Changed datasheet status to “Full Datasheet”.
Introduced concept of SRAM1 and SRAM2.
LQFP176 package now in production and offered only for 256 Kbyte
and 1 Mbyte devices. Availability of WLCSP64+2 package limited to
512 Kbyte and 1 Mbyte devices.
Updated Figure 3: Compatible board design between STM32F10xx
and STM32F2xx for LQFP144 package and Figure 2: Compatible
board design between STM32F10xx and STM32F2xx for LQFP100
package.
Added camera interface for STM32F207Vx devices in Table 2:
STM32F205xx features and peripheral counts.
Removed 16 MHz internal RC oscillator accuracy in Section 3.12:
Clocks and startup.
Updated Section 3.16: Voltage regulator.
Modified I2S sampling frequency range in Section 3.12: Clocks and
startup, Section 3.24: Inter-integrated sound (I2S), and Section 3.30:
Audio PLL (PLLI2S).
Updated Section 3.17: Real-time clock (RTC), backup SRAM and
backup registers and description of TIM2 and TIM5 in Section 3.20.2:
General-purpose timers (TIMx).
Modified maximum baud rate (oversampling by 16) for USART1 in
Table 6: USART feature comparison.
Updated note related to RFU pin below Figure 12: STM32F20x
LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, Figure 14:
STM32F20x LQFP176 pinout, Figure 15: STM32F20x UFBGA176
ballout, and Table 8: STM32F20x pin and ball definitions.
In Table 8: STM32F20x pin and ball definitions,:changed I2S2_CK and
I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and
TT (3.6 V tolerant I/O).
Added RTC_50Hz as PB15 alternate function in Table 8: STM32F20x
pin and ball definitions and Table 10: Alternate function mapping.
Removed
ETH _RMII_TX_CLK for PC3/AF11 in
Table 10: Alternate
function mapping.
Updated Table 11: Voltage characteristics and Table 12: Current
characteristics.
TSTG updated to –65 to +150 in Table 13: Thermal characteristics.
Added CEXT, ESL, and ESR in Table 14: General operating conditions
as well as Section 6.3.2: VCAP1/VCAP2 external capacitor.
Modified Note 4 in Table 15: Limitations depending on the operating
power supply range.
Updated Table 17: Operating conditions at power-up / power-down
(regulator ON), and Table 18: Operating conditions at power-up /
power-down (regulator OFF).
Added OSC_OUT pin in Figure 17: Pin loading conditions. and
Figure 18: Pin input voltage.
Updated Figure 19: Power supply scheme to add IRROFF and
REGOFF pins and modified notes.
Updated VPVD, VBOR1, VBOR2, VBOR3, TRSTTEMPO typical value, and
IRUSH, added ERUSH and Note 2 in Table 19: Embedded reset and
power control block characteristics.
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
170/179 DocID15818 Rev 12
22-Apr-2011 6
(continued)
Updated Typical and maximum current consumption conditions, as
well as Table 21: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure 23,
Figure 24, Figure 25, and Figure 26.
Updated Table 22: Typical and maximum current consumption in Sleep
mode, and added Figure 27 and Figure 28.
Updated Table 23: Typical and maximum current consumptions in Stop
mode. Added Figure 29: Typical current consumption vs temperature
in Stop mode.
Updated Table 24: Typical and maximum current consumptions in
Standby mode and Table 25: Typical and maximum current
consumptions in VBAT mode.
Updated On-chip peripheral current consumption conditions and
Table 26: Peripheral current consumption.
Updated tWUSTDBY and tWUSTOP
, and added Note 3 in Table 27: Low-
power mode wakeup timings.
Maximum fHSE_ext and minimum tw(HSE) values updated in Table 28:
High-speed external user clock characteristics.
Updated C and gm in Table 30: HSE 4-26 MHz oscillator
characteristics. Updated RF
, I2, gm, and tsu(LSE) in Table 31: LSE
oscillator characteristics (fLSE = 32.768 kHz).
Added Note 1 and updated ACCHSI, IDD(HSI, and tsu(HSI) in Table 32 :
HSI oscillator characteristics. Added Figure 34: ACCHSI versus
temperature.
Updated fLSI, tsu(LSI) and IDD(LSI) in Table 33: LSI oscillator
characteristics. Added Figure 35: ACCLSI versus temperature
Table 34: Main PLL characteristics: removed note 1, updated tLOCK,
jitter, IDD(PLL) and IDDA(PLL), added Note 2 for fPLL_IN minimum and
maximum values.
Table 35: PLLI2S (audio PLL) characteristics: removed note 1,
updated tLOCK, jitter, IDD(PLLI2S) and IDDA(PLLI2S), added Note 2 for
fPLLI2S_IN minimum and maximum values.
Added Note 1 in Table 36: SSCG parameters constraint.
Updated Table 37: Flash memory characteristics. Modified Table 38:
Flash memory programming and added Note 2 for tprog. Updated tprog
and added Note 1 in Table 39: Flash memory programming with VPP.
Modified Figure 40: Recommended NRST pin protection.
Updated Table 42: EMI characteristics and EMI monitoring conditions
in Section : Electromagnetic Interference (EMI). Added Note 2 related
to VESD(HBM)in Table 43: ESD absolute maximum ratings.
Updated Table 48: I/O AC characteristics.
Added Section 6.3.15: I/O current injection characteristics.
Modified maximum frequency values and conditions in Table 48: I/O
AC characteristics.
Updated tres(TIM) in Table 50: Characteristics of TIMx connected to the
APB1 domain. Modified tres(TIM) and fEXT Table 51: Characteristics of
TIMx connected to the APB2 domain.
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 171/179
STM32F20xxx Revision history
178
22-Apr-2011 6
(continued)
Changed tw(SCKH) to tw(SCLH), tw(SCKL) to tw(SCLL), tr(SCK) to tr(SCL), and
tf(SCK) to tf(SCL) in Table 52: I2C characteristics and in Figure 41: I2C
bus AC waveforms and measurement circuit.
Added Table 57: USB OTG FS DC electrical characteristics and
updated Table 58: USB OTG FS electrical characteristics.
Updated VDD minimum value in Table 62: Ethernet DC electrical
characteristics.
Updated Table 66: ADC characteristics and RAIN equation.
Updated RAIN equation. Updated Table 68: DAC characteristics.
Updated tSTART in Table 69: Temperature sensor characteristics.
Updated R typical value in Table 70: VBAT monitoring characteristics.
Updated Table 71: Embedded internal reference voltage.
Modified FSMC_NOE waveform in Figure 57: Asynchronous non-
multiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of
FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK
period, changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-
AIV), td(CLKH-NOEH) to td(CLKL-NOEH), and td(CLKH-NWEH) to td(CLKL-
NWEH), and updated data latency from 1 to 0 in Figure 61:
Synchronous multiplexed NOR/PSRAM read timings, Figure 62:
Synchronous multiplexed PSRAM write timings, Figure 63:
Synchronous non-multiplexed NOR/PSRAM read timings, and
Figure 64: Synchronous non-multiplexed PSRAM write timings,
Changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-AIV),
td(CLKH-NOEH) to td(CLKL-NOEH), td(CLKH-NWEH) to td(CLKL-NWEH), and
modified tw(CLK) minimum value in Table 76, Table 77, Table 78, and
Table 79 .
Updated note 2 in Table 7 2, Table 73, Table 74, Table 75, Table 76,
Table 77 , Table 78, and Table 79.
Modified th(NIOWR-D) in Figure 70: PC Card/CompactFlash controller
waveforms for I/O space write access.
Modified FSMC_NCEx signal in Figure 71: NAND controller
waveforms for read access, Figure 72: NAND controller waveforms for
write access, Figure 73: NAND controller waveforms for common
memory read access, and Figure 74: NAND controller waveforms for
common memory write access
Specified Full speed (FS) mode for Figure 89: USB OTG HS
peripheral-only connection in FS mode and Figure 90: USB OTG HS
host-only connection in FS mode.
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
172/179 DocID15818 Rev 12
14-Jun-2011 7
Added SDIO in Table 2: STM32F205xx features and peripheral counts.
Updated VIN for 5V tolerant pins in Table 11: Voltage characteristics.
Updated jitter parameters description in Table 34: Main PLL
characteristics.
Remove jitter values for system clock in Table 35: PLLI2S (audio PLL)
characteristics.
Updated Table 42: EMI characteristics.
Update Note 2 in Table 52: I2C characteristics.
Updated Avg_Slope typical value and TS_temp minimum value in
Table 69: Temperature sensor characteristics.
Updated TS_vbat minimum value in Table 70: VBAT monitoring
characteristics.
Updated TS_vrefint mimimum value in Table 71: Embedded internal
reference voltage.
Added Software option in Section 8: Part numbering.
In Table 101: Main applications versus package for STM32F2xxx
microcontrollers, renamed USB1 and USB2, USB OTG FS and USB
OTG HS, respectively; and removed USB OTG FS and camera
interface for 64-pin package; added USB OTG HS on 64-pin package;
added Note 1 and Note 2.
20-Dec-2011 8
Updated SDIO register addresses in Figure 16: Memory map.
Updated Figure 3: Compatible board design between STM32F10xx
and STM32F2xx for LQFP144 package, Figure 2: Compatible board
design between STM32F10xx and STM32F2xx for LQFP100 package,
Figure 1: Compatible board design between STM32F10xx and
STM32F2xx for LQFP64 package, and added Figure 4: Compatible
board design between STM32F10xx and STM32F2xx for LQFP176
package.
Updated Section 3.3: Memory protection unit.
Updated Section 3.6: Embedded SRAM.
Updated Section 3.28: Universal serial bus on-the-go full-speed
(OTG_FS) to remove external FS OTG PHY support.
In Table 8: STM32F20x pin and ball definitions: changed SPI2_MCK
and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added
ETH _RMII_TX_EN atlternate function to PG11. Added EVENTOUT in
the list of alternate functions for I/O pin/balls. Removed
OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate
functions.
In Table 10: Alternate function mapping: changed I2S3_SCK to
I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3
for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA,
OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed
I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals
corresponding to AF12.
Removed CEXT and ESR from Table 14: General operating
conditions.
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 173/179
STM32F20xxx Revision history
178
20-Dec-2011 8
(continued)
Added maximum power consumption at TA=25 °C in Table 23: Typical
and maximum current consumptions in Stop mode.
Updated md minimum value in Table 36: SSCG parameters constraint.
Added examples in Section 6.3.11: PLL spread spectrum clock
generation (SSCG) characteristics.
Updated Table 54: SPI characteristics and Table 55: I2S
characteristics.
Updated Figure 48: ULPI timing diagram and Table 61: ULPI timing.
Updated Table 63: Dynamics characteristics: Ethernet MAC signals for
SMI, Table 64: Dynamics characteristics: Ethernet MAC signals for
RMII, and Table 65: Dynamics characteristics: Ethernet MAC signals
for MII.
Section 6.3.25: FSMC characteristics: updated Table 72 toTa bl e 83 ,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 62:
Synchronous multiplexed PSRAM write timings.
UpdatedTable 84: DCMI characteristics.
Updated Table 92: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm mechanical data.
Updated Table 94: Ordering information scheme.
Appendix A.2: USB OTG full speed (FS) interface solutions: updated
Figure 87: USB OTG FS (full speed) host-only connection and added
Note 2, updated Figure 88: OTG FS (full speed) connection dual-role
with internal PHY and added Note 3 and Note 4, modified Figure 89:
OTG HS (high speed) device connection, host and dual-role in high-
speed mode with external PHY and added Note 2.
Appendix A.3: USB OTG high speed (HS) interface solutions:
removed figures USB OTG HS device-only connection in FS mode and
USB OTG HS host-only connection in FS mode,updated Figure 89:
OTG HS (high speed) device connection, host and dual-role in high-
speed mode with external PHY.
Added Appendix A.4: Ethernet interface solutions.
Updated disclaimer on last page.
24-Apr-2012 9
Updated VDD minimum value in Section 2: Description.
Updated number of USB OTG HS and FS, modified packages for
STM32F207Ix part numbers, added Note 1 related to FSMC and
Note 2 related to SPI/I2S, and updated Note 3 in Table 2:
STM32F205xx features and peripheral counts and Tabl e 3:
STM32F207xx features and peripheral counts.
Added Note 2 and update TIM5 in Figure 4: STM32F20x block
diagram.
Updated maximum number of maskable interrupts in Section 3.10:
Nested vectored interrupt controller (NVIC).
Updated VDD minimum value in Section 3.14: Power supply schemes.
Updated Note a in Section 3.16.1: Regulator ON.
Removed STM32F205xx in Section 3.28: Universal serial bus on-the-
go full-speed (OTG_FS).
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
174/179 DocID15818 Rev 12
24-Apr-2012 9
(continued)
Removed support of I2C for OTG PHY in Section 3.29: Universal serial
bus on-the-go high-speed (OTG_HS).
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 8:
STM32F20x pin and ball definitions and Table 10: Alternate function
mapping.
Renamed PH10 alternate function into TIM5_CH1 in Table 10:
Alternate function mapping.
Added Table 9: FSMC pin definition.
Updated Note 1 in Table 14: General operating conditions, Note 2 in
Table 15: Limitations depending on the operating power supply range,
and Note 1 below Figure 21: Number of wait states versus fCPU and
VDD range.
Updated VPOR/PDR in Table 19: Embedded reset and power control
block characteristics.
Updated typical values in Table 24: Typical and maximum current
consumptions in Standby mode and Table 25: Typical and maximum
current consumptions in VBAT mode.
Updated Table 30: HSE 4-26 MHz oscillator characteristics and
Table 31: LSE oscillator characteristics (fLSE = 32.768 kHz).
Updated Table 37: Flash memory characteristics, Table 38: Flash
memory programming, and Table 39: Flash memory programming with
VPP.
Updated Section : Output driving current.
Updated Note 3 and removed note related to minimum hold time value
in Table 52: I2C characteristics.
Updated Table 64: Dynamics characteristics: Ethernet MAC signals for
RMII.
Updated Note 1, CADC, IVREF+, and IVDDA in Table 66: ADC
characteristics.
Updated Note 3 and note concerning ADC accuracy vs. negative
injection current in Table 67: ADC accuracy.
Updated Note 1 in Table 68: DAC characteristics.
Updated Section Figure 88.: UFBGA176+25 - ultra thin fine pitch ball
grid array 10 × 10 × 0.6 mm, package outline.
Appendix A.1: Main applications versus package: removed number of
address lines for FSMC/NAND in Table 101: Main applications versus
package for STM32F2xxx microcontrollers.
Appendix A.4: Ethernet interface solutions: updated Figure 92:
Complete audio player solution 1 and Figure 93: Complete audio
player solution 2.
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 175/179
STM32F20xxx Revision history
178
29-Oct-2012 10
Changed minimum supply voltage from 1.65 to 1.8 V.
Updated number of AHB buses in Section 2: Description and
Section 3.12: Clocks and startup.
Removed Figure 4. Compatible board design between STM32F10xx
and STM32F2xx for LQFP176 package.
Updated Note 2 below Figure 4: STM32F20x block diagram.
Changed System memory to System memory + OTP in Figure 16:
Memory map.
Added Note 1 below Table 16: VCAP1/VCAP2 operating conditions.
Updated VDDA and VREF+ decouping capacitor in Figure 19: Power
supply scheme and updated Note 3.
Changed simplex mode into half-duplex mode in Section 3.24: Inter-
integrated sound (I2S).
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and
DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into
TIM2_CH1_ETR for PA0 and PA5 in Table 10: Alternate function
mapping.
Updated note applying to IDD (external clock and all peripheral
disabled) in Table 21: Typical and maximum current consumption in
Run mode, code with data processing running from Flash memory
(ART accelerator disabled). Updated Note 3 below Table 22: Typical
and maximum current consumption in Sleep mode.
Removed fHSE_ext typical value in Table 28: High-speed external user
clock characteristics.
Updated master I2S clock jitter conditions and vlaues in Table 35:
PLLI2S (audio PLL) characteristics.
Updated equations in Section 6.3.11: PLL spread spectrum clock
generation (SSCG) characteristics.
Swapped TTL and CMOS port conditions for VOL and VOH in Tabl e 47:
Output voltage characteristics.
Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin
characteristics.
Updated Table 54: SPI characteristics and Table 55: I2S
characteristics. Removed note 1 related to measurement points below
Figure 43: SPI timing diagram - slave mode and CPHA = 1, Figure 44:
SPI timing diagram - master mode, and Figure 45: I2S slave timing
diagram (Philips protocol)(1).
Updated tHC in Table 61: ULPI timing.
Updated Figure 49: Ethernet SMI timing diagram, Table 63: Dynamics
characteristics: Ethernet MAC signals for SMI and Table 65: Dynamics
characteristics: Ethernet MAC signals for MII.
Update fTRIG in Table 66: ADC characteristics.
Updated IDDA description in Table 68: DAC characteristics.
Updated note below Figure 54: Power supply and reference
decoupling (VREF+ not connected to VDDA) and Figure 55: Power
supply and reference decoupling (VREF+ connected to VDDA).
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
176/179 DocID15818 Rev 12
29-Oct-2012 10
(continued)
Replaced td(CLKL-NOEL) by td(CLKH-NOEL) in Table 76: Synchronous
multiplexed NOR/PSRAM read timings, Table 78: Synchronous non-
multiplexed NOR/PSRAM read timings, Figure 61: Synchronous
multiplexed NOR/PSRAM read timings and Figure 63: Synchronous
non-multiplexed NOR/PSRAM read timings.
Added Figure 87: LQFP176 recommended footprint.
Added Note 2 below Figure 86: Regulator OFF/internal reset ON.
Updated device subfamily in Table 94: Ordering information scheme.
Remove reference to note 2 for USB IOTG FS in Table 101: Main
applications versus package for STM32F2xxx microcontrollers.
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 177/179
STM32F20xxx Revision history
178
04-Nov-2013 11
In the whole document, updated notes related to WLCSP64+2 usage
with IRROFF set to VDD. Updated Section 3.14: Power supply
schemes, Section 3.15: Power supply supervisor, Section 3.16.1:
Regulator ON and Section 3.16.2: Regulator OFF. Added
Section 3.16.3: Regulator ON/OFF and internal reset ON/OFF
availability. Added note related to WLCSP64+2 package.
Restructured RTC features and added reference clock detection in
Section 3.17: Real-time clock (RTC), backup SRAM and backup
registers.
Added note indicating the package view below Figure 10: STM32F20x
LQFP64 pinout, Figure 12: STM32F20x LQFP100 pinout, Figure 13:
STM32F20x LQFP144 pinout, and Figure 14: STM32F20x LQFP176
pinout.
Added Table 7: Legend/abbreviations used in the pinout table. Ta ble 8:
STM32F20x pin and ball definitions: content reformatted; removed
indeces on VSS and VDD; updated PA4, PA5, PA6, PC4, BOOT0;
replaced DCMI_12 by DCMI_D12, TIM8_CHIN by TIM8_CH1N,
ETH_MII_RX_D0 by ETH_MII_RXD0, ETH_MII_RX_D1 by
ETH_MII_RXD1, ETH_RMII_RX_D0 by ETH_RMII_RXD0,
ETH_RMII_RX_D1 by ETH_RMII_RXD1, and RMII_CRS_DV by
ETH_RMII_CRS_DV.
Table 10: Alternate function mapping: replaced FSMC_BLN1 by
FSMC_NBL1, added EVENTOUT as AF15 alternated fucntion for
PC13, PC14, PC15, PH0, PH1, and PI8.
Updated Figure 17: Pin loading conditions and Figure 18: Pin input
voltage.
Added VIN in Table 14: General operating conditions.
Removed note applying to VPOR/PDR minimum value in Table 19:
Embedded reset and power control block characteristics.
Updated notes related to CL1 and CL2 in Section : Low-speed external
clock generated from a crystal/ceramic resonator.
Updated conditions in Table 41: EMS characteristics. Updated
Table 42: EMI characteristics. Updated VIL, VIH and VHys in Table 46:
I/O static characteristics. Added Section : Output driving currentand
updated Figure 39: I/O AC characteristics definition.
Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin
characteristics, updated Figure 39: I/O AC characteristics definition.
Removed tests conditions in Section : I2C interface characteristics.
Updated Table 52: I2C characteristics and Figure 41: I2C bus AC
waveforms and measurement circuit.
Updated IVREF+ and IVDDA in Table 66: ADC characteristics. Updated
Offset comments in Table 68: DAC characteristics.
Updated minimum th(CLKH-DV) value in Table 78: Synchronous non-
multiplexed NOR/PSRAM read timings.
Table 95. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
178/179 DocID15818 Rev 12
04-Nov-2013 11
(continued)
Removed Appendix A Application block diagrams.
Updated Figure 77: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat
package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin low-
profile quad flat package mechanical data. Updated Figure 80:
LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline,
Figure 83: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat
package outline, Figure 86: LQFP176 - Low profile quad flat package
24 × 24 × 1.4 mm, package outline. Updated Figure 88:
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline and Figure 88: UFBGA176+25 - ultra thin fine pitch
ball grid array 10 × 10 × 0.6 mm, package outline.
27-Oct-2014 12
Updated VBAT voltage range in Figure 19: Power supply scheme.
Added caution note in Section 6.1.6: Power supply scheme.
Updated VIN in Table 14: General operating conditions.
Removed note 1 in Table 23: Typical and maximum current
consumptions in Stop mode.
Updated Table 45: I/O current injection susceptibility, Section 6.3.16:
I/O port characteristics and Section 6.3.17: NRST pin characteristics.
Removed note 3 in Table 69: Temperature sensor characteristics.
Updated Figure 79: WLCSP64+2 - 0.400 mm pitch wafer level chip
size package outline and Table 88: WLCSP64+2 - 0.400 mm pitch
wafer level chip size package mechanical data. Added Figure 82:
LQFP100 marking (package top view) and Figure 85: LQFP144
marking (package top view).
Table 95. Document revision history (continued)
Date Revision Changes
DocID15818 Rev 12 179/179
STM32F20xxx
179
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved