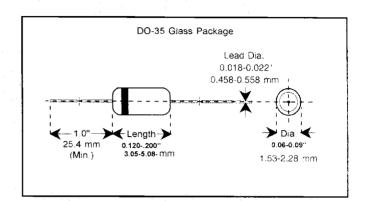
Silicon Switching Diode

1N914BCP


DO-35 Glass Package

Applications

Used in general purpose applications, where a controlled forward characteristic and fast switching speed are important.

Features

- Six sigma quality
- Metallurgically bonded
- BKC's Sigma Bond™ plating for problem free solderability
- LL-34/35 MELF SMD available
- Hermetic Glass Body
- Comparable to JANS
- Only Value Added Testing Used

Maximum Ratings			Symbo	ol Value	Unit
Peak Inverse Voltage			PIV	100 (Min).	Volts
Average Rectified Current			lavg	200	mAmps
Continuous Forward Current			Fdc	300	mAmps
Peak Surge Current (t _{peak} = 1 sec.)			peak	1.0	Amp
BKC Power Dissipation T _L =50 °C, L = 3/8" from body			P _{tot}	500	mWatts
Operating Temperature Range			T _{Op}	-65 to +200	°C
Storage Temperature Range			T _{St}	-65 to +200	° C
Electrical Characteristics @ 25°C*	Symbol	Mi	nimum	Maximum	Unit
Forward Voltage Drop @ I _F = 10 mA	$V_{\scriptscriptstyle{F}}$	*	**	0.80	Volts
Forward Voltage Drop @ I _F = 100 mA	V _F	*	***	1.20	Volts
Breakdown Voltage @ 1 _R = 100µA	PIV	1	00		Volts
Reverse Leakage Current @ V _R = 20 V	l _R			25 (50000 @ 150 °C) nA
Reverse Leakage Current @ V _R = 75 V	l _R			0.5 (100 @ 150 °C)	microA
Capacitance @ V _R = 0 V, f = 1mHz	C_{\scriptscriptstyleT}			4.0	pF
Capacitance @ $V_R = 1.5V$, f = 1mHz	C_{τ}			2.8	pF
Reverse Recovery time (note 1)	t _{rr}			5.0	nSecs
Forward Recovery time	t _{fr}			20	nSecs

Note 1: Per Method 4031-A with $I_r = 10$ mA,Vr = 6 V, $R_r = 100$ Ohms. * UNLESS OTHERWISE SPECIFIED

6 Lake Street - Lawrence, MA 01841 Tel: 978-681-0392 - Fax: 978-681-9135

