SCRs 8 Amp RMS, Plastic

FEATURES

- Voltage Ratings: to 200V
- Forward Current: 0.8A RMS
- Surge Current: 6A, 8ms
- Gate Sensitivity: 200μa max.
- Planar Passivated Process
- TO-92 Plastic Package

DESCRIPTION

This plastic series features very fast switching performance, low forward voltage drop and a high degree of reliability and parameter stability. All units are fully planar passivated and are packaged in a rugged TO-92 case, constructed from a special epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.

TYPICAL APPLICATIONS

Lamp Driving Relay Driving **Process Controls Pressure Controls** Display Systems

Remote Controls High Current SCR Driving

Timers

Relay Replacement Alarm Systems

Touch Switches

Temperature Controls

ABSOLUTE MAXIMUM RATINGS

Alarm Systems		remperature C					
Counters	and many other curren	t sensing and co	ontrol applications.				
IJa'	tas	h	20	T (
ABSOLUTE MAXIMUM R	ATINGS						
		2N5060	2N5061	2N5062	2N5063	2N5064	
Repetitive Peak Off-State	e Voltage, V	30V	60V	100V	150V	200V	
Repetitive Peak Reverse	Voltage, Von	30V	60V	100V	150V	200V	
On-State Current, Irong				A8.0			
Peak One Cycle Surge (I Peak Gate Current, I _{GM}	Non-Rep.) On-State Cur	rent, ITSM		6A			
Peak Gate Current, IGM				1.0A			
Peak Gate Power, PGM				TAA	.,		
Average Gate Power P _c	(AV)			0.01W			
Reverse Gate Voltage, V	GR			6V			
Storage Temperature Ra	nge			_65°C to +150°C	· •		
Operating Temperature	Range			.—65°C to +125°C	·		

MECHANICAL SPECIFICATIONS

ELECTRICAL SPECIFICATIONS (at 25°C unless noted

Test	Symbol	Min.	Typical	Max.	Units	Test Conditions
Off-State Current	I _{DRM}	_	0.1 —	1.0 50	μ Α μ Α	$egin{align*} oldsymbol{V}_{ m DRM} = oldsymbol{R} { m ating} & oldsymbol{R}_{ m GK} = 1 { m K} \Omega \ oldsymbol{V}_{ m DRM} = { m Rating}, { m T} = 125 { m ^{\circ}C} \end{array}$
Reverse Current	I _{RRM}	_	0.1	1.0 50	μ Α μ Α	$egin{align*} V_{ m RRM} = { m Rating} & { m R}_{ m GK} = 1{ m K}\Omega \ V_{ m RRM} = { m Rating}, { m T} = 125^{\circ}{ m C} \ \end{array}$
Gate Trigger Current	I _{GT}	_	_	200 350	μ Α μ Α	$V_D=7V,R_L=100$ ohms $R_{GS}=10K\Omega$ $V_D=7V,R_L=100$ ohms, $T=-65^{\circ}C$
Gate Trigger Voltage	V _{GT}		0.6 	0.8 1.2 —	V V V	$\begin{array}{l} {\rm V_D = 7V,R_L = 100ohmsR_{GS} = 10K\Omega} \\ {\rm V_D = 7V,R_L = 100ohms,T = -65^{\circ}C} \\ {\rm V_D = Rating,R_L = 100ohms,T = 125^{\circ}C} \end{array}$
Peak On-State Voltage Holding Current	V _{TM}	_ _ _	1.2 0.7 —	1.7 5.0 10.0	V mA mA	$\begin{split} \mathbf{I}_{TM} &= 1 Amp Pulse \\ \mathbf{V}_{D} &= 7V, T = 25^{\circ}C \\ \mathbf{V}_{D} &= 7V, T = -65^{\circ}C \end{split}$
Critical Rate of Rise — Off-State Voltage	dv/dt	_	75		V/μs	$V_D = Rated$
Turn-on Time	t _{on}	T -	0.1		μS	$I_{\rm G}=10$ mA, $I_{\rm T}=1$ A, $V_{\rm D}=30$ V
Circuit Commutated Turn-off Time	t _q	_	8	_	μS	$I_T = I_R = 1A$

Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.

DESIGN CONSIDERATIONS

 The 2N5060 Series SCRs are guaranteed to block their rated voltage over the rated operating temperature when a resistance of 1000 ohms or less is connected from gate to cathode as shown.

In cases where the SCR may be subjected to fast rising anode voltages a capacitor can be connected between anode or gate and cathode as shown, to serve as protection against dv/dt firing.

Gate Trigger Voltage vs. Junction Temp.

Holding Current vs. Junction Temp.

dy/dt vs. Junction Temp.

Gate Pulse For Turn-On vs. Pulse Gate Current

X

Current vs. On-State Voltage

Current vs. Power Dissipation

Current vs. Ambient Temp.

Current vs. Case Temp.

Current vs. Heatsink Temp.

Surge Rating vs. Pulse Duration

